Aligning Web Query Generation with Ranking Objectives via Direct Preference Optimization
- URL: http://arxiv.org/abs/2505.19307v1
- Date: Sun, 25 May 2025 20:34:12 GMT
- Title: Aligning Web Query Generation with Ranking Objectives via Direct Preference Optimization
- Authors: João Coelho, Bruno Martins, João Magalhães, Chenyan Xiong,
- Abstract summary: We propose a framework that integrates ranking signals into the query generation process.<n> Experiments show higher ranker-assessed relevance between query-document pairs after DPO.
- Score: 21.140086066964667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural retrieval models excel in Web search, but their training requires substantial amounts of labeled query-document pairs, which are costly to obtain. With the widespread availability of Web document collections like ClueWeb22, synthetic queries generated by large language models offer a scalable alternative. Still, synthetic training queries often vary in quality, which leads to suboptimal downstream retrieval performance. Existing methods typically filter out noisy query-document pairs based on signals from an external re-ranker. In contrast, we propose a framework that leverages Direct Preference Optimization (DPO) to integrate ranking signals into the query generation process, aiming to directly optimize the model towards generating high-quality queries that maximize downstream retrieval effectiveness. Experiments show higher ranker-assessed relevance between query-document pairs after DPO, leading to stronger downstream performance on the MS~MARCO benchmark when compared to baseline models trained with synthetic data.
Related papers
- Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task.<n>Existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively.<n>We propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking.
arXiv Detail & Related papers (2025-04-07T15:27:37Z) - MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation [34.66546005629471]
Large Language Models (LLMs) are essential tools for various natural language processing tasks but often suffer from generating outdated or incorrect information.<n>Retrieval-Augmented Generation (RAG) addresses this issue by incorporating external, real-time information retrieval to ground LLM responses.<n>To tackle this problem, we propose Multi-Agent Filtering Retrieval-Augmented Generation (MAIN-RAG)<n>MAIN-RAG is a training-free RAG framework that leverages multiple LLM agents to collaboratively filter and score retrieved documents.
arXiv Detail & Related papers (2024-12-31T08:07:26Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
This work aims to bridge the gap by investigating the problem of data synthesis through multi-agent sampling.<n>We introduce Tree Search-based Orchestrated Agents(TOA), where the workflow evolves iteratively during the sequential sampling process.<n>Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales.
arXiv Detail & Related papers (2024-12-22T15:16:44Z) - Data Fusion of Synthetic Query Variants With Generative Large Language Models [1.864807003137943]
This work explores the feasibility of using synthetic query variants generated by instruction-tuned Large Language Models in data fusion experiments.
We introduce a lightweight, unsupervised, and cost-efficient approach that exploits principled prompting and data fusion techniques.
Our analysis shows that data fusion based on synthetic query variants is significantly better than baselines with single queries and also outperforms pseudo-relevance feedback methods.
arXiv Detail & Related papers (2024-11-06T12:54:27Z) - Ordinal Preference Optimization: Aligning Human Preferences via NDCG [28.745322441961438]
We develop an end-to-end preference optimization algorithm by approxing NDCG with a differentiable surrogate loss.
OPO outperforms existing pairwise and listwise approaches on evaluation sets and general benchmarks like AlpacaEval.
arXiv Detail & Related papers (2024-10-06T03:49:28Z) - Optimizing Query Generation for Enhanced Document Retrieval in RAG [53.10369742545479]
Large Language Models (LLMs) excel in various language tasks but they often generate incorrect information.
Retrieval-Augmented Generation (RAG) aims to mitigate this by using document retrieval for accurate responses.
arXiv Detail & Related papers (2024-07-17T05:50:32Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
We propose query-oriented data augmentation to enrich search logs and empower the modeling.
We generate supplemental training pairs by altering the most important part of a search context.
We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty.
arXiv Detail & Related papers (2024-07-04T08:08:33Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
We propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query.
Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
arXiv Detail & Related papers (2022-12-18T15:57:46Z) - AugTriever: Unsupervised Dense Retrieval and Domain Adaptation by Scalable Data Augmentation [44.93777271276723]
We propose two approaches that enable annotation-free and scalable training by creating pseudo querydocument pairs.
The query extraction method involves selecting salient spans from the original document to generate pseudo queries.
The transferred query generation method utilizes generation models trained for other NLP tasks, such as summarization, to produce pseudo queries.
arXiv Detail & Related papers (2022-12-17T10:43:25Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z) - Improving Document Representations by Generating Pseudo Query Embeddings
for Dense Retrieval [11.465218502487959]
We design a method to mimic the queries on each of the documents by an iterative clustering process.
We also optimize the matching function with a two-step score calculation procedure.
Experimental results on several popular ranking and QA datasets show that our model can achieve state-of-the-art results.
arXiv Detail & Related papers (2021-05-08T05:28:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.