論文の概要: $k$NN Attention Demystified: A Theoretical Exploration for Scalable Transformers
- arxiv url: http://arxiv.org/abs/2411.04013v1
- Date: Wed, 06 Nov 2024 15:50:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:22:18.677119
- Title: $k$NN Attention Demystified: A Theoretical Exploration for Scalable Transformers
- Title(参考訳): $k$NN Attention Demystified: スケーラブルトランスフォーマーの理論的探索
- Authors: Themistoklis Haris,
- Abstract要約: 我々は$k$NN注目のための理論的枠組みを確立し、ソフトマックス分布に対する期待として自己注意を再構築する。
また,効率的なサンプリング手法を活用することで,自己注意勾配を近似する新しいサブクワッドラティックアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Despite their power, Transformers face challenges with long sequences due to the quadratic complexity of self-attention. To address this limitation, methods like $k$-Nearest-Neighbor ($k$NN) attention have been introduced [Roy, Saffar, Vaswani, Grangier, 2021] enabling each token to attend to only its $k$ closest tokens. While $k$NN attention has shown empirical success in making Transformers more efficient, its exact approximation guarantees have not been theoretically analyzed. In this work, we establish a theoretical framework for $k$NN attention, reformulating self-attention as expectations over softmax distributions and leveraging lazy Gumbel sampling [Mussmann, Levy, Ermon, 2017] with $k$NN indices for efficient approximation. Building on this framework, we also propose novel sub-quadratic algorithms that approximate self-attention gradients by leveraging efficient sampling techniques, such as Markov Chain-based estimation. Finally, we demonstrate the practical effectiveness of these algorithms through empirical experiments, showcasing their benefits in both training and inference.
- Abstract(参考訳): その力にもかかわらず、トランスフォーマーは、自己注意の二次的な複雑さのために、長いシーケンスで課題に直面している。
この制限に対処するため、$k$-Nearest-Neighbor(k$NN)といったメソッドが導入された(Roy、Saffar、Vaswani、Grangier、2021)。
k$NNの注目はTransformerをより効率的にするための実証的な成功を示しているが、正確な近似保証は理論的には分析されていない。
本研究は、$k$NN注目のための理論的枠組みを確立し、ソフトマックス分布に対する期待値として自己注意を再構築し、遅延ガムベルサンプリング(Mussmann, Levy, Ermon, 2017)を効率的な近似のために$k$NN指標で活用する。
また,この枠組みに基づいて,マルコフ連鎖推定などの効率的なサンプリング手法を活用することで,自己注意勾配を近似する新しい部分2次アルゴリズムを提案する。
最後に,これらのアルゴリズムの実践的効果を実証実験により実証し,学習と推論の両面での利点を示す。
関連論文リスト
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
本稿では,反復的BONDと自己プレイアライメントの統一的なゲーム理論接続を明らかにする。
WINレート支配(WIN rate Dominance, WIND)という新しいフレームワークを構築し, 正規化利率支配最適化のためのアルゴリズムを多数提案する。
論文 参考訳(メタデータ) (2024-10-28T04:47:39Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
我々は、$m=mathcalO(nk)$バイナリ変数を$n$ qubitsだけを使って最適化するために、$k>1$で可変量子ソルバを導入する。
我々は,特定の量子ビット効率の符号化が,バレン高原の超ポリノミウム緩和を内蔵特徴としてもたらすことを解析的に証明した。
論文 参考訳(メタデータ) (2024-01-17T18:59:38Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
我々は最近,誤りを軽減した量子回路を用いてエミュレートされた127量子ビットキックド・イジングモデルの古典的シミュレーションを行った。
提案手法はハイゼンベルク図の射影的絡み合ったペア作用素(PEPO)に基づいている。
我々はクリフォード展開理論を開発し、正確な期待値を計算し、それらをアルゴリズムの評価に利用する。
論文 参考訳(メタデータ) (2023-08-06T10:24:23Z) - Langevin Thompson Sampling with Logarithmic Communication: Bandits and
Reinforcement Learning [34.4255062106615]
トンプソンサンプリング(TS)は、使用が容易で、経験的性能に訴えるため、シーケンシャルな意思決定に広く用いられている。
バッチ化された$textitLangevin Thompson Sampling$アルゴリズムを提案する。
アルゴリズムは計算効率が高く,MABでは$mathcalO(log T)$,RLでは$mathcalO(sqrtT)$と同じオーダー最適後悔保証を維持している。
論文 参考訳(メタデータ) (2023-06-15T01:16:29Z) - Quantum Computing Provides Exponential Regret Improvement in Episodic
Reinforcement Learning [35.11103784048256]
有限水平MDPの学習を容易にするために,textitUpper Confidence Bound (UCB) ベースの量子アルゴリズムフレームワークを提案する。
我々の量子アルゴリズムは、古典的なアルゴリズムと比較して、後悔の指数的な改善を実現している。
論文 参考訳(メタデータ) (2023-02-16T23:01:27Z) - Achieving Linear Speedup in Non-IID Federated Bilevel Learning [16.56643290676128]
我々はFedMBOという新しいフェデレーションバイレベルアルゴリズムを提案する。
We show that FedMBO achieve a convergence rate of $mathcalObig(frac1sqrtnK+frac1K+fracsqrtnK3/2big)$ on non-i.d.datasets。
これは、i.d.d.federated bilevel optimizationに対する最初の理論的線形スピードアップ結果である。
論文 参考訳(メタデータ) (2023-02-10T18:28:00Z) - Anti-Concentrated Confidence Bonuses for Scalable Exploration [57.91943847134011]
固有の報酬は、探検と探検のトレードオフを扱う上で中心的な役割を果たす。
楕円ボーナスを効率的に近似するためのエンファンティ集中型信頼境界を導入する。
我々は,Atariベンチマーク上での現代固有の報酬と競合する,深層強化学習のための実用的な変種を開発する。
論文 参考訳(メタデータ) (2021-10-21T15:25:15Z) - Thompson Sampling for Unimodal Bandits [21.514495320038712]
本稿では, 半順序の腕に対して期待される報酬が一様であるアンフンモダル・バンディットに対するトンプソンサンプリングアルゴリズムを提案する。
ガウスの報酬に対して、我々のアルゴリズムの後悔は$mathcalO(log T)$であり、標準的なトンプソンサンプリングアルゴリズムよりもはるかに優れている。
論文 参考訳(メタデータ) (2021-06-15T14:40:34Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
対戦相手が展開するスムーズなアルゴリズムに対して,Min-playerの新しいアルゴリズムを提案する。
本アルゴリズムは,制限周期のない単調進行を保証し,適切な勾配上昇数を求める。
論文 参考訳(メタデータ) (2021-06-02T22:03:36Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
敵対的レジリエントな分散最適化。
機械は独立して勾配を計算し 協力することができます
私達のアルゴリズムは新しい集中の技術およびサンプル複雑性に基づいています。
それは非常に実用的です:それはないときすべての前の方法の性能を改善します。
セッティングマシンがあります。
論文 参考訳(メタデータ) (2020-12-28T17:19:32Z) - A General Theory of the Stochastic Linear Bandit and Its Applications [8.071506311915398]
本稿では,線形バンディット問題に対する一般解析フレームワークとアルゴリズム群を紹介する。
予測における最適化という新たな概念は、OFULの過剰探索問題を減少させるSieeved greedy(SG)と呼ばれる新しいアルゴリズムを生み出します。
SGが理論的に最適であることを示すことに加えて、実験シミュレーションにより、SGはgreedy、OFUL、TSといった既存のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-02-12T18:54:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。