Prompt Engineering Using GPT for Word-Level Code-Mixed Language Identification in Low-Resource Dravidian Languages
- URL: http://arxiv.org/abs/2411.04025v1
- Date: Wed, 06 Nov 2024 16:20:37 GMT
- Title: Prompt Engineering Using GPT for Word-Level Code-Mixed Language Identification in Low-Resource Dravidian Languages
- Authors: Aniket Deroy, Subhankar Maity,
- Abstract summary: In multilingual societies like India, text often exhibits code-mixing, blending local languages with English at different linguistic levels.
This paper introduces a prompt based method for a shared task aimed at addressing word-level LI challenges in Dravidian languages.
In this work, we leveraged GPT-3.5 Turbo to understand whether the large language models is able to correctly classify words into correct categories.
- Score: 0.0
- License:
- Abstract: Language Identification (LI) is crucial for various natural language processing tasks, serving as a foundational step in applications such as sentiment analysis, machine translation, and information retrieval. In multilingual societies like India, particularly among the youth engaging on social media, text often exhibits code-mixing, blending local languages with English at different linguistic levels. This phenomenon presents formidable challenges for LI systems, especially when languages intermingle within single words. Dravidian languages, prevalent in southern India, possess rich morphological structures yet suffer from under-representation in digital platforms, leading to the adoption of Roman or hybrid scripts for communication. This paper introduces a prompt based method for a shared task aimed at addressing word-level LI challenges in Dravidian languages. In this work, we leveraged GPT-3.5 Turbo to understand whether the large language models is able to correctly classify words into correct categories. Our findings show that the Kannada model consistently outperformed the Tamil model across most metrics, indicating a higher accuracy and reliability in identifying and categorizing Kannada language instances. In contrast, the Tamil model showed moderate performance, particularly needing improvement in precision and recall.
Related papers
- Prompting Towards Alleviating Code-Switched Data Scarcity in Under-Resourced Languages with GPT as a Pivot [1.3741556944830366]
This study prompted GPT 3.5 to generate Afrikaans--English and Yoruba--English code-switched sentences.
The quality of generated sentences for languages using non-Latin scripts, like Yoruba, is considerably lower when compared with the high Afrikaans-English success rate.
We propose a framework for augmenting the diversity of synthetically generated code-switched data using GPT.
arXiv Detail & Related papers (2024-04-26T07:44:44Z) - cantnlp@LT-EDI-2024: Automatic Detection of Anti-LGBTQ+ Hate Speech in
Under-resourced Languages [0.0]
This paper describes our homophobia/transphobia in social media comments detection system developed as part of the shared task at LT-EDI-2024.
We took a transformer-based approach to develop our multiclass classification model for ten language conditions.
We introduced synthetic and organic instances of script-switched language data during domain adaptation to mirror the linguistic realities of social media language.
arXiv Detail & Related papers (2024-01-28T21:58:04Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Script Normalization for Unconventional Writing of Under-Resourced
Languages in Bilingual Communities [36.578851892373365]
Social media has provided linguistically under-represented communities with an extraordinary opportunity to create content in their native languages.
This paper addresses the problem of script normalization for several such languages that are mainly written in a Perso-Arabic script.
Using synthetic data with various levels of noise and a transformer-based model, we demonstrate that the problem can be effectively remediated.
arXiv Detail & Related papers (2023-05-25T18:18:42Z) - Romanization-based Large-scale Adaptation of Multilingual Language
Models [124.57923286144515]
Large multilingual pretrained language models (mPLMs) have become the de facto state of the art for cross-lingual transfer in NLP.
We study and compare a plethora of data- and parameter-efficient strategies for adapting the mPLMs to romanized and non-romanized corpora of 14 diverse low-resource languages.
Our results reveal that UROMAN-based transliteration can offer strong performance for many languages, with particular gains achieved in the most challenging setups.
arXiv Detail & Related papers (2023-04-18T09:58:34Z) - Prompting Multilingual Large Language Models to Generate Code-Mixed
Texts: The Case of South East Asian Languages [47.78634360870564]
We explore prompting multilingual models to generate code-mixed data for seven languages in South East Asia (SEA)
We find that publicly available multilingual instruction-tuned models such as BLOOMZ are incapable of producing texts with phrases or clauses from different languages.
ChatGPT exhibits inconsistent capabilities in generating code-mixed texts, wherein its performance varies depending on the prompt template and language pairing.
arXiv Detail & Related papers (2023-03-23T18:16:30Z) - CLSE: Corpus of Linguistically Significant Entities [58.29901964387952]
We release a Corpus of Linguistically Significant Entities (CLSE) annotated by experts.
CLSE covers 74 different semantic types to support various applications from airline ticketing to video games.
We create a linguistically representative NLG evaluation benchmark in three languages: French, Marathi, and Russian.
arXiv Detail & Related papers (2022-11-04T12:56:12Z) - A Comprehensive Understanding of Code-mixed Language Semantics using
Hierarchical Transformer [28.3684494647968]
We propose a hierarchical transformer-based architecture (HIT) to learn the semantics of code-mixed languages.
We evaluate the proposed method across 6 Indian languages and 9 NLP tasks on 17 datasets.
arXiv Detail & Related papers (2022-04-27T07:50:18Z) - Multilingual Text Classification for Dravidian Languages [4.264592074410622]
We propose a multilingual text classification framework for the Dravidian languages.
On the one hand, the framework used the LaBSE pre-trained model as the base model.
On the other hand, in view of the problem that the model cannot well recognize and utilize the correlation among languages, we further proposed a language-specific representation module.
arXiv Detail & Related papers (2021-12-03T04:26:49Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.