IndicMMLU-Pro: Benchmarking Indic Large Language Models on Multi-Task Language Understanding
- URL: http://arxiv.org/abs/2501.15747v2
- Date: Tue, 28 Jan 2025 04:56:40 GMT
- Title: IndicMMLU-Pro: Benchmarking Indic Large Language Models on Multi-Task Language Understanding
- Authors: Sankalp KJ, Ashutosh Kumar, Laxmaan Balaji, Nikunj Kotecha, Vinija Jain, Aman Chadha, Sreyoshi Bhaduri,
- Abstract summary: Known by more than 1.5 billion people in the Indian subcontinent, Indic languages present unique challenges and opportunities for natural language processing (NLP) research.
IndicMMLU-Pro is a benchmark designed to evaluate Large Language Models (LLMs) across Indic languages.
- Score: 2.062076715606512
- License:
- Abstract: Known by more than 1.5 billion people in the Indian subcontinent, Indic languages present unique challenges and opportunities for natural language processing (NLP) research due to their rich cultural heritage, linguistic diversity, and complex structures. IndicMMLU-Pro is a comprehensive benchmark designed to evaluate Large Language Models (LLMs) across Indic languages, building upon the MMLU Pro (Massive Multitask Language Understanding) framework. Covering major languages such as Hindi, Bengali, Gujarati, Marathi, Kannada, Punjabi, Tamil, Telugu, and Urdu, our benchmark addresses the unique challenges and opportunities presented by the linguistic diversity of the Indian subcontinent. This benchmark encompasses a wide range of tasks in language comprehension, reasoning, and generation, meticulously crafted to capture the intricacies of Indian languages. IndicMMLU-Pro provides a standardized evaluation framework to push the research boundaries in Indic language AI, facilitating the development of more accurate, efficient, and culturally sensitive models. This paper outlines the benchmarks' design principles, task taxonomy, and data collection methodology, and presents baseline results from state-of-the-art multilingual models.
Related papers
- TUMLU: A Unified and Native Language Understanding Benchmark for Turkic Languages [2.115206401188031]
We propose two benchmarks for Turkic language MMLU: TUMLU and TUMLU-mini.
TUMLU-mini consists of middle- and high-school level questions spanning 11 academic subjects in Azerbaijani, Crimean Tatar, Karakalpak, Kazakh, Tatar, Turkish, Uyghur, and Uzbek.
We also present TUMLU-mini, a more concise, balanced, and manually verified subset of the dataset.
arXiv Detail & Related papers (2025-02-16T07:07:38Z) - All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages [73.93600813999306]
ALM-bench is the largest and most comprehensive effort to date for evaluating LMMs across 100 languages.
It challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages.
The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions.
arXiv Detail & Related papers (2024-11-25T15:44:42Z) - Prompt Engineering Using GPT for Word-Level Code-Mixed Language Identification in Low-Resource Dravidian Languages [0.0]
In multilingual societies like India, text often exhibits code-mixing, blending local languages with English at different linguistic levels.
This paper introduces a prompt based method for a shared task aimed at addressing word-level LI challenges in Dravidian languages.
In this work, we leveraged GPT-3.5 Turbo to understand whether the large language models is able to correctly classify words into correct categories.
arXiv Detail & Related papers (2024-11-06T16:20:37Z) - MILU: A Multi-task Indic Language Understanding Benchmark [7.652738829153342]
We introduce MILU, a comprehensive evaluation benchmark designed to assess Large Language Models in Indic languages.
With an India-centric design, MILU incorporates material from regional and state-level examinations, covering topics such as local history, arts, festivals, and laws, alongside standard subjects like science and mathematics.
Open multilingual models outperform language-specific fine-tuned models, which perform only slightly better than random baselines.
arXiv Detail & Related papers (2024-11-04T19:17:17Z) - Navigating Text-to-Image Generative Bias across Indic Languages [53.92640848303192]
This research investigates biases in text-to-image (TTI) models for the Indic languages widely spoken across India.
It evaluates and compares the generative performance and cultural relevance of leading TTI models in these languages against their performance in English.
arXiv Detail & Related papers (2024-08-01T04:56:13Z) - SeaLLMs 3: Open Foundation and Chat Multilingual Large Language Models for Southeast Asian Languages [77.75535024869224]
We present SeaLLMs 3, the latest iteration of the SeaLLMs model family, tailored for Southeast Asian languages.
SeaLLMs 3 aims to bridge this gap by covering a comprehensive range of languages spoken in this region, including English, Chinese, Indonesian, Vietnamese, Thai, Tagalog, Malay, Burmese, Khmer, Lao, Tamil, and Javanese.
Our model excels in tasks such as world knowledge, mathematical reasoning, translation, and instruction following, achieving state-of-the-art performance among similarly sized models.
arXiv Detail & Related papers (2024-07-29T03:26:22Z) - Decoding the Diversity: A Review of the Indic AI Research Landscape [0.7864304771129751]
Indic languages are those spoken in the Indian subcontinent, including India, Pakistan, Bangladesh, Sri Lanka, Nepal, and Bhutan.
This review paper provides a comprehensive overview of large language model (LLM) research directions within Indic languages.
arXiv Detail & Related papers (2024-06-13T19:55:20Z) - IndicGenBench: A Multilingual Benchmark to Evaluate Generation Capabilities of LLMs on Indic Languages [12.514648269553104]
IndicGenBench is the largest benchmark for evaluating large language models (LLMs)
It is composed of diverse generation tasks like cross-lingual summarization, machine translation, and cross-lingual question answering.
The largest PaLM-2 models performs the best on most tasks, however, there is a significant performance gap in all languages compared to English.
arXiv Detail & Related papers (2024-04-25T17:57:36Z) - MLaKE: Multilingual Knowledge Editing Benchmark for Large Language Models [65.10456412127405]
MLaKE is a benchmark for the adaptability of knowledge editing methods across five languages.
MLaKE aggregates fact chains from Wikipedia across languages and generates questions in both free-form and multiple-choice.
We evaluate the multilingual knowledge editing generalization capabilities of existing methods on MLaKE.
arXiv Detail & Related papers (2024-04-07T15:23:28Z) - MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for
Natural Language Understanding in Task-Oriented Dialogue [115.32009638844059]
We extend the English only NLU++ dataset to include manual translations into a range of high, medium, and low resource languages.
Because of its multi-intent property, MULTI3NLU++ represents complex and natural user goals.
We use MULTI3NLU++ to benchmark state-of-the-art multilingual models for the Natural Language Understanding tasks of intent detection and slot labelling.
arXiv Detail & Related papers (2022-12-20T17:34:25Z) - MCoNaLa: A Benchmark for Code Generation from Multiple Natural Languages [76.93265104421559]
We benchmark code generation from natural language commands extending beyond English.
We annotated a total of 896 NL-code pairs in three languages: Spanish, Japanese, and Russian.
While the difficulties vary across these three languages, all systems lag significantly behind their English counterparts.
arXiv Detail & Related papers (2022-03-16T04:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.