Generalized quantum asymptotic equipartition
- URL: http://arxiv.org/abs/2411.04035v1
- Date: Wed, 06 Nov 2024 16:33:16 GMT
- Title: Generalized quantum asymptotic equipartition
- Authors: Kun Fang, Hamza Fawzi, Omar Fawzi,
- Abstract summary: We prove that all operationally relevant divergences converge to the quantum relative entropy between two sets of quantum states.
In particular, both the smoothed min-relative entropy between two sequential processes of quantum channels can be lower bounded by the sum of the regularized minimum output channel divergences.
We apply our generalized AEP to quantum resource theories and provide improved and efficient bounds for entanglement distillation, magic state distillation, and the entanglement cost of quantum states and channels.
- Score: 11.59751616011475
- License:
- Abstract: We establish a generalized quantum asymptotic equipartition property (AEP) beyond the i.i.d. framework where the random samples are drawn from two sets of quantum states. In particular, under suitable assumptions on the sets, we prove that all operationally relevant divergences converge to the quantum relative entropy between the sets. More specifically, both the smoothed min- and max-relative entropy approach the regularized relative entropy between the sets. Notably, the asymptotic limit has explicit convergence guarantees and can be efficiently estimated through convex optimization programs, despite the regularization, provided that the sets have efficient descriptions. We give four applications of this result: (i) The generalized AEP directly implies a new generalized quantum Stein's lemma for conducting quantum hypothesis testing between two sets of quantum states. (ii) We introduce a quantum version of adversarial hypothesis testing where the tester plays against an adversary who possesses internal quantum memory and controls the quantum device and show that the optimal error exponent is precisely characterized by a new notion of quantum channel divergence, named the minimum output channel divergence. (iii) We derive a relative entropy accumulation theorem stating that the smoothed min-relative entropy between two sequential processes of quantum channels can be lower bounded by the sum of the regularized minimum output channel divergences. (iv) We apply our generalized AEP to quantum resource theories and provide improved and efficient bounds for entanglement distillation, magic state distillation, and the entanglement cost of quantum states and channels. At a technical level, we establish new additivity and chain rule properties for the measured relative entropy which we expect will have more applications.
Related papers
- Strong Converse Exponent of Quantum Dichotomies [5.371337604556312]
We study the large-deviation behavior of quantum dichotomies and determine the exact strong converse exponent based on the purified distance.
Our result is characterized by a simple optimization of quantum R'enyi information measures involving all four mutually non-commuting quantum states.
arXiv Detail & Related papers (2024-10-16T13:54:18Z) - Inner bounding the quantum entropy cone with subadditivity and subsystem coarse grainings [0.0]
We show that all the extreme rays of both the three-party quantum entropy cone and the four-party stabilizer entropy cone can be obtained from subsystem coarse grainings of specific higher-party quantum states.
This suggests that the study of the subadditivity cone'', and the set of its extreme rays realizable in quantum mechanics, provides a powerful tool for deriving inner bounds for the quantum and stabilizer entropy cones.
arXiv Detail & Related papers (2023-12-07T06:42:13Z) - Overcoming entropic limitations on asymptotic state transformations
through probabilistic protocols [12.461503242570641]
We show that it is no longer the case when one allows protocols that may only succeed with some probability.
We show that this is no longer the case when one allows protocols that may only succeed with some probability.
arXiv Detail & Related papers (2022-09-07T18:00:00Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Quantum Fluctuation-Response Inequality and Its Application in Quantum
Hypothesis Testing [6.245537312562826]
We find a bound for the mean difference of an observable at two different quantum states.
When the spectrum of the observable is bounded, the sub-Gaussian property is used to link the bound with the sub-Gaussian norm of the observable.
We show the versatility of our results by their applications in problems like thermodynamic inference and speed limit.
arXiv Detail & Related papers (2022-03-20T09:10:54Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Computing conditional entropies for quantum correlations [10.549307055348596]
In particular, we find new upper bounds on the minimal global detection efficiency required to perform device-independent quantum key distribution.
We introduce the family of iterated mean quantum R'enyi divergences with parameters $alpha_k = 1+frac12k-1$ for positive integers $k$.
We show that the corresponding conditional entropies admit a particularly nice form which, in the context of device-independent optimization, can be relaxed to a semidefinite programming problem.
arXiv Detail & Related papers (2020-07-24T15:27:51Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.