Strong Converse Exponent of Quantum Dichotomies
- URL: http://arxiv.org/abs/2410.12576v1
- Date: Wed, 16 Oct 2024 13:54:18 GMT
- Title: Strong Converse Exponent of Quantum Dichotomies
- Authors: Mario Berta, Yongsheng Yao,
- Abstract summary: We study the large-deviation behavior of quantum dichotomies and determine the exact strong converse exponent based on the purified distance.
Our result is characterized by a simple optimization of quantum R'enyi information measures involving all four mutually non-commuting quantum states.
- Score: 5.371337604556312
- License:
- Abstract: The quantum dichotomies problem asks at what rate one pair of quantum states can be approximately mapped into another pair of quantum states. In the many copy limit and for vanishing error, the optimal rate is known to be given by the ratio of the respective quantum relative distances. Here, we study the large-deviation behavior of quantum dichotomies and determine the exact strong converse exponent based on the purified distance. Our result is characterized by a simple optimization of quantum R\'enyi information measures involving all four mutually non-commuting quantum states. Our findings thus constitute an operational example of studying multivariate extensions of quantum R\'enyi information measure.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Approximation of the Nearest Classical-Classical State to a Quantum
State [0.0]
A revolutionary step in computation is driven by quantumness or quantum correlations, which are permanent in entanglements but often in separable states.
The exact quantification of quantumness is an NP-hard problem; thus, we consider alternative approaches to approximate it.
We show that the objective value decreases along the flow by proofs and numerical results.
arXiv Detail & Related papers (2023-01-23T08:26:17Z) - Quantum Wasserstein distance based on an optimization over separable
states [0.0]
We find that the self-distance is related to the quantum Fisher information.
We present a transport map corresponding to an optimal bipartite separable state.
arXiv Detail & Related papers (2022-09-20T18:01:33Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - One-shot quantum state redistribution and quantum Markov chains [15.66921140731163]
We revisit the task of quantum state redistribution in the one-shot setting.
We design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains.
Our result is the first to operationally connect quantum state redistribution and quantum chains.
arXiv Detail & Related papers (2021-04-18T07:34:22Z) - Quantifying the difference between many-body quantum states [0.0]
We introduce the weighted distances, a new class of information-theoretic measures.
They quantify how hard it is to discriminate between two quantum states of many particles.
They can be used to evaluate both the theoretical and the experimental performances of complex quantum devices.
arXiv Detail & Related papers (2020-12-10T12:10:09Z) - Pure State Tomography with Fourier Transformation [3.469001874498102]
Two adaptive protocols are proposed, with their respective quantum circuits.
Experiments on the IBM 5-qubit quantum computer, as well as numerical investigations, demonstrate the feasibility of the proposed protocols.
arXiv Detail & Related papers (2020-08-20T17:13:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.