論文の概要: H-POPE: Hierarchical Polling-based Probing Evaluation of Hallucinations in Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2411.04077v1
- Date: Wed, 06 Nov 2024 17:55:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:23:18.771811
- Title: H-POPE: Hierarchical Polling-based Probing Evaluation of Hallucinations in Large Vision-Language Models
- Title(参考訳): H-POPE:大規模視覚言語モデルにおける幻覚の階層的ポーリングに基づく探索評価
- Authors: Nhi Pham, Michael Schott,
- Abstract要約: 対象物の存在と属性の幻覚を評価する粗粒度ベンチマークであるH-POPEを提案する。
評価の結果,モデルが物体の存在に幻覚を与える傾向がみられ,さらに微粒な属性が生じる傾向が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: By leveraging both texts and images, large vision language models (LVLMs) have shown significant progress in various multi-modal tasks. Nevertheless, these models often suffer from hallucinations, e.g., they exhibit inconsistencies between the visual input and the textual output. To address this, we propose H-POPE, a coarse-to-fine-grained benchmark that systematically assesses hallucination in object existence and attributes. Our evaluation shows that models are prone to hallucinations on object existence, and even more so on fine-grained attributes. We further investigate whether these models rely on visual input to formulate the output texts.
- Abstract(参考訳): テキストと画像の両方を活用することで、大規模視覚言語モデル(LVLM)は様々なマルチモーダルタスクにおいて大きな進歩を見せている。
しかしながら、これらのモデルはしばしば幻覚に悩まされ、例えば視覚入力とテキスト出力の矛盾を示す。
そこで本研究では,対象物の存在と属性の幻覚を体系的に評価する粗粒度ベンチマークH-POPEを提案する。
評価の結果,モデルが物体の存在に幻覚を与える傾向がみられ,さらに微粒な属性が生じる傾向が示唆された。
さらに、これらのモデルが出力テキストの定式化に視覚的入力に依存しているかどうかについても検討する。
関連論文リスト
- Mitigating Hallucinations in Large Vision-Language Models via Summary-Guided Decoding [14.701135083174918]
LVLM(Large Vision-Language Models)は、視覚入力から詳細でコヒーレントな応答を生成する。
言語に対する依存度が高すぎるため、幻覚を起こす傾向にある。
我々は,SGD(Session-Guided Decoding)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-17T08:24:27Z) - From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models [15.401221354325672]
大型視覚モデル(LVLM)における幻覚は、視覚入力に表示されない物体を生成するという重要な課題である。
最近の研究では、幻覚は視覚的な入力の理解の欠如に起因しているが、より根本的な問題は無視されている。
本稿では,LVLMの幻覚をアーキテクチャの観点から再検討し,視覚エンコーダ(機能抽出)とモーダルアライメントモジュール(機能デカップリング)の主な原因について検討する。
論文 参考訳(メタデータ) (2024-10-09T11:46:32Z) - VideoHallucer: Evaluating Intrinsic and Extrinsic Hallucinations in Large Video-Language Models [59.05674402770661]
本稿では,大規模ビデオ言語モデル(LVLM)における幻覚検出のための最初の総合的ベンチマークであるVideoHallucerを紹介する。
VideoHallucerは幻覚を2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-06-24T06:21:59Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - The Hallucinations Leaderboard -- An Open Effort to Measure Hallucinations in Large Language Models [24.11077502209129]
大規模言語モデル(LLM)は自然言語処理(NLP)のランドスケープを、人間のようなテキストを理解して生成する優れた能力で変えてきた。
しかし、これらのモデルは幻覚(幻覚)の傾向があり、実際の現実や入力コンテキストと一致しない。
本稿では,各モデルの幻覚発生傾向を定量的に測定し,比較するオープンイニシアチブである幻覚リーダーボードを紹介する。
論文 参考訳(メタデータ) (2024-04-08T23:16:22Z) - Quantity Matters: Towards Assessing and Mitigating Number Hallucination in Large Vision-Language Models [57.42800112251644]
本研究では,画像中の特定の物体の数を誤って識別するモデルを参照しながら,特定の種類の幻覚数幻覚に焦点を当てた。
そこで,本研究では,数幻覚を減らすための一貫性向上を目的としたトレーニング手法を考案し,直接微調整法よりも8%の性能向上を図った。
論文 参考訳(メタデータ) (2024-03-03T02:31:11Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
大規模言語モデル(LM)は、しばしば幻覚と呼ばれる事実的誤りを引き起こす傾向にある。
我々は,幻覚の包括的分類を導入し,幻覚が多様な形態で現れることを議論する。
本稿では, 幻覚自動検出のための新しいタスクを提案し, 新たな評価ベンチマークであるFavaBenchを構築した。
論文 参考訳(メタデータ) (2024-01-12T19:02:48Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - Plausible May Not Be Faithful: Probing Object Hallucination in
Vision-Language Pre-training [66.0036211069513]
大規模視覚言語事前学習モデルは、テキストを生成する際に、存在しない視覚オブジェクトを幻覚させる傾向がある。
標準メトリクスでより良いスコアを得るモデルは、オブジェクトをより頻繁に幻覚させる可能性があることを示す。
驚いたことに、パッチベースの機能が最も良く、より小さなパッチ解決は、オブジェクト幻覚の非自明な減少をもたらす。
論文 参考訳(メタデータ) (2022-10-14T10:27:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。