論文の概要: From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2410.06795v1
- Date: Wed, 9 Oct 2024 11:46:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 03:40:32.177154
- Title: From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models
- Title(参考訳): レンズからトークンへ:大規模視覚言語モデルにおける物体の幻覚の再考
- Authors: Yuying Shang, Xinyi Zeng, Yutao Zhu, Xiao Yang, Zhengwei Fang, Jingyuan Zhang, Jiawei Chen, Zinan Liu, Yu Tian,
- Abstract要約: 大型視覚モデル(LVLM)における幻覚は、視覚入力に表示されない物体を生成するという重要な課題である。
最近の研究では、幻覚は視覚的な入力の理解の欠如に起因しているが、より根本的な問題は無視されている。
本稿では,LVLMの幻覚をアーキテクチャの観点から再検討し,視覚エンコーダ(機能抽出)とモーダルアライメントモジュール(機能デカップリング)の主な原因について検討する。
- 参考スコア(独自算出の注目度): 15.401221354325672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hallucinations in large vision-language models (LVLMs) are a significant challenge, i.e., generating objects that are not presented in the visual input, which impairs their reliability. Recent studies often attribute hallucinations to a lack of understanding of visual input, yet ignore a more fundamental issue: the model's inability to effectively extract or decouple visual features. In this paper, we revisit the hallucinations in LVLMs from an architectural perspective, investigating whether the primary cause lies in the visual encoder (feature extraction) or the modal alignment module (feature decoupling). Motivated by our findings on the preliminary investigation, we propose a novel tuning strategy, PATCH, to mitigate hallucinations in LVLMs. This plug-and-play method can be integrated into various LVLMs, utilizing adaptive virtual tokens to extract object features from bounding boxes, thereby addressing hallucinations caused by insufficient decoupling of visual features. PATCH achieves state-of-the-art performance on multiple multi-modal hallucination datasets. We hope this approach provides researchers with deeper insights into the underlying causes of hallucinations in LVLMs, fostering further advancements and innovation in this field.
- Abstract(参考訳): 大型視覚言語モデル(LVLM)における幻覚は、視覚入力に表示されないオブジェクトを生成するという重要な課題であり、その信頼性を損なう。
近年の研究では、幻覚は視覚的入力の理解の欠如に起因しているが、より根本的な問題は無視されている:モデルが視覚的特徴を効果的に抽出または分離できないことである。
本稿では,LVLMの幻覚をアーキテクチャの観点から再検討し,視覚的エンコーダ(機能抽出)やモーダルアライメントモジュール(機能デカップリング)に原因があるかを検討する。
予備調査の結果に触発され,LVLMの幻覚を緩和するための新しいチューニング戦略であるPATCHを提案する。
このプラグアンドプレイ方式は、適応的な仮想トークンを利用して、バウンディングボックスからオブジェクト特徴を抽出し、視覚的特徴の疎結合不足による幻覚に対処し、様々なLVLMに統合することができる。
PATCHは複数のマルチモーダル幻覚データセット上で最先端のパフォーマンスを達成する。
このアプローチが研究者にLVLMの幻覚の根本原因について深い洞察を与え、この分野のさらなる進歩と革新を促進することを願っている。
関連論文リスト
- Reducing Hallucinations in Vision-Language Models via Latent Space Steering [34.1755878632361]
幻覚は、アプリケーションに大規模な視覚言語モデル(LVLM)を配置する上での課題である。
本稿では,視覚的特徴の安定性を高めるために,視覚とテクスチュアル・インターベンション(VTI, Visual and Textual Intervention)を提案する。
論文 参考訳(メタデータ) (2024-10-21T08:42:30Z) - A Survey of Hallucination in Large Visual Language Models [48.794850395309076]
幻覚の存在は、様々な分野におけるLVLMの可能性と実用性を制限している。
LVLMの構造と幻覚の発生の主な原因を紹介する。
LVLMの幻覚評価ベンチマークについて述べる。
論文 参考訳(メタデータ) (2024-10-20T10:58:58Z) - Investigating and Mitigating Object Hallucinations in Pretrained Vision-Language (CLIP) Models [22.42712853647949]
本稿では,CLIPモデル内での物体幻覚問題について詳細に検討する。
孤立しても、CLIPモデルは対象の幻覚に傾向があり、幻覚問題は単に視覚と言語モダリティの相互作用によるものではないことを示唆する。
拡張モデルは視覚エンコーダとして利用でき、LVLMにおける物体幻覚の問題を効果的に緩和できることを示す。
論文 参考訳(メタデータ) (2024-10-04T06:24:49Z) - HELPD: Mitigating Hallucination of LVLMs by Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding [36.360171373963716]
LVLM(Large Vision-Language Models)は多くの視覚言語タスクにおいて顕著な性能を示している。
これらのモデルはまだマルチモーダル幻覚に悩まされており、それは画像に反するオブジェクトやコンテンツの生成を意味する。
本稿では、この問題に対処するために、視力強化されたペナルティ復号法(HELPD)を用いた階層的フィードバック学習を提案する。
論文 参考訳(メタデータ) (2024-09-30T15:52:05Z) - VideoHallucer: Evaluating Intrinsic and Extrinsic Hallucinations in Large Video-Language Models [59.05674402770661]
本稿では,大規模ビデオ言語モデル(LVLM)における幻覚検出のための最初の総合的ベンチマークであるVideoHallucerを紹介する。
VideoHallucerは幻覚を2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-06-24T06:21:59Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - Mitigating Object Hallucinations in Large Vision-Language Models through
Visual Contrastive Decoding [125.05295513481035]
本稿では,オリジナルおよび歪曲された視覚入力から出力分布を対比する,シンプルでトレーニングのないVisual Contrastive Decoding(VCD)を紹介する。
提案したVCDは, 対象幻覚の2つの重要な原因である, 統計的偏見と単調な先行性に対する信頼度を効果的に低減する。
実験の結果,付加的なトレーニングや外部ツールの使用がなければ,異なるLVLMファミリーにおける物体幻覚の問題を著しく軽減できることがわかった。
論文 参考訳(メタデータ) (2023-11-28T16:26:35Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
本研究は,大規模視覚言語モデル(LVLM)の物体幻覚に関する最初の体系的研究である。
LVLMは、記述中の対象画像と矛盾しないオブジェクトを生成する傾向がある。
対象の幻覚を評価するために,POPEと呼ばれるポーリングに基づくクエリ手法を提案する。
論文 参考訳(メタデータ) (2023-05-17T16:34:01Z) - Plausible May Not Be Faithful: Probing Object Hallucination in
Vision-Language Pre-training [66.0036211069513]
大規模視覚言語事前学習モデルは、テキストを生成する際に、存在しない視覚オブジェクトを幻覚させる傾向がある。
標準メトリクスでより良いスコアを得るモデルは、オブジェクトをより頻繁に幻覚させる可能性があることを示す。
驚いたことに、パッチベースの機能が最も良く、より小さなパッチ解決は、オブジェクト幻覚の非自明な減少をもたらす。
論文 参考訳(メタデータ) (2022-10-14T10:27:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。