論文の概要: A Collaborative Content Moderation Framework for Toxicity Detection based on Conformalized Estimates of Annotation Disagreement
- arxiv url: http://arxiv.org/abs/2411.04090v1
- Date: Wed, 06 Nov 2024 18:08:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:24:20.894382
- Title: A Collaborative Content Moderation Framework for Toxicity Detection based on Conformalized Estimates of Annotation Disagreement
- Title(参考訳): アノテーションの一致度に基づく毒性検出のための協調型コンテンツモデレーションフレームワーク
- Authors: Guillermo Villate-Castillo, Javier Del Ser, Borja Sanz,
- Abstract要約: アノテーションの不一致を捉えることの重要性を強調する新しいコンテンツモデレーションフレームワークを導入する。
提案手法では,毒性分類を主課題とし,アノテーションの不一致を補助課題として扱うマルチタスク学習を用いる。
我々は、コメントアノテーションの曖昧さと、毒性と不一致を予測するモデル固有の不確実性の両方を考慮するために、不確実性推定技術、特にコンフォーマル予測を利用する。
- 参考スコア(独自算出の注目度): 7.345136916791223
- License:
- Abstract: Content moderation typically combines the efforts of human moderators and machine learning models.However, these systems often rely on data where significant disagreement occurs during moderation, reflecting the subjective nature of toxicity perception.Rather than dismissing this disagreement as noise, we interpret it as a valuable signal that highlights the inherent ambiguity of the content,an insight missed when only the majority label is considered.In this work, we introduce a novel content moderation framework that emphasizes the importance of capturing annotation disagreement. Our approach uses multitask learning, where toxicity classification serves as the primary task and annotation disagreement is addressed as an auxiliary task.Additionally, we leverage uncertainty estimation techniques, specifically Conformal Prediction, to account for both the ambiguity in comment annotations and the model's inherent uncertainty in predicting toxicity and disagreement.The framework also allows moderators to adjust thresholds for annotation disagreement, offering flexibility in determining when ambiguity should trigger a review.We demonstrate that our joint approach enhances model performance, calibration, and uncertainty estimation, while offering greater parameter efficiency and improving the review process in comparison to single-task methods.
- Abstract(参考訳): コンテンツモデレーションは、典型的には、人間のモデレーターと機械学習モデルの努力が組み合わさっているが、これらのシステムは、モデレーション中に重大な不一致が生じ、毒性知覚の主観的な性質を反映するデータに依存していることが多い。
提案手法では, コメントアノテーションの曖昧性と, 毒性と不一致の予測におけるモデル固有の不確実性の両方を考慮し, モデレーターがアノテーションの不一致のしきい値の調整や, あいまいさをいつ引き起こすべきかを判断する柔軟性を提供するとともに, モデル性能, キャリブレーション, 不確実性評価を向上し, パラメータ効率の向上と, 単一タスクとの比較によるレビュープロセスの改善を図っている。
関連論文リスト
- On Subjective Uncertainty Quantification and Calibration in Natural Language Generation [2.622066970118316]
大規模言語モデルは多くの場合、不確実な定量化が困難になるような自由形式の応答を生成する。
この研究はベイズ決定論の観点からこれらの課題に対処する。
本稿では,モデルの主観的不確実性とそのキャリブレーションを原理的に定量化する方法について論じる。
提案手法はブラックボックス言語モデルに適用できる。
論文 参考訳(メタデータ) (2024-06-07T18:54:40Z) - Interpretable Automatic Fine-grained Inconsistency Detection in Text
Summarization [56.94741578760294]
本研究の目的は, 要約中の事実誤りの微粒化を予測し, 微粒化不整合検出の課題を提案することである。
要約における現実的不整合の検査方法に触発され,解析可能な微粒不整合検出モデルであるFinGrainFactを提案する。
論文 参考訳(メタデータ) (2023-05-23T22:11:47Z) - Uncertain Facial Expression Recognition via Multi-task Assisted
Correction [43.02119884581332]
MTACと呼ばれる不確実な表情認識に対処するためのマルチタスク支援補正法を提案する。
具体的には、信頼度推定ブロックと重み付け正則化モジュールを用いて、固体試料をハイライトし、バッチ毎に不確かさサンプルを抑圧する。
RAF-DB、AffectNet、AffWild2データセットの実験は、MTACが合成および実際の不確実性に直面した際のベースラインよりも大幅に改善されていることを示した。
論文 参考訳(メタデータ) (2022-12-14T10:28:08Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Fairness and robustness in anti-causal prediction [73.693135253335]
分散シフトと公平性に対するロバストさは、機械学習モデルに必要な2つの重要なデシラタとして独立に現れている。
これら2つのデシダラタは関連しているように見えるが、実際にはその関連性はしばしば不明である。
この観点から見れば、共通フェアネス基準(分離)とロバストネスの共通概念との明確な関係を描いています。
論文 参考訳(メタデータ) (2022-09-20T02:41:17Z) - Dealing with Disagreements: Looking Beyond the Majority Vote in
Subjective Annotations [6.546195629698355]
主観的タスクに対するマルチアノテータモデルの有効性について検討する。
このアプローチは、トレーニング前にラベルをアグリゲートするよりも、同じまたは良いパフォーマンスが得られることを示す。
提案手法は予測の不確かさを推定する手段も提供し,従来の手法よりもアノテーションの不一致との相関が良好であることを示す。
論文 参考訳(メタデータ) (2021-10-12T03:12:34Z) - Dive into Ambiguity: Latent Distribution Mining and Pairwise Uncertainty
Estimation for Facial Expression Recognition [59.52434325897716]
DMUE(DMUE)という,アノテーションのあいまいさを2つの視点から解決するソリューションを提案する。
前者に対しては,ラベル空間における潜伏分布をよりよく記述するために,補助的マルチブランチ学習フレームワークを導入する。
後者の場合、インスタンス間の意味的特徴のペアワイズ関係を完全に活用して、インスタンス空間のあいまいさの程度を推定する。
論文 参考訳(メタデータ) (2021-04-01T03:21:57Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。