High-fidelity gates in a transmon using bath engineering for passive leakage reset
- URL: http://arxiv.org/abs/2411.04101v1
- Date: Wed, 06 Nov 2024 18:28:49 GMT
- Title: High-fidelity gates in a transmon using bath engineering for passive leakage reset
- Authors: Ted Thorbeck, Alexander McDonald, O. Lanes, John Blair, George Keefe, Adam A. Stabile, Baptiste Royer, Luke C. G. Govia, Alexandre Blais,
- Abstract summary: Leakage, the occupation of any state not used in the computation, is one of the most devastating errors in quantum error correction.
We demonstrate a device which reduces the lifetimes of the leakage states in the transmon by three orders of magnitude.
- Score: 65.46249968484794
- License:
- Abstract: Leakage, the occupation of any state not used in the computation, is one of the of the most devastating errors in quantum error correction. Transmons, the most common superconducting qubits, are weakly anharmonic multilevel systems, and are thus prone to this type of error. Here we demonstrate a device which reduces the lifetimes of the leakage states in the transmon by three orders of magnitude, while protecting the qubit lifetime and the single-qubit gate fidelties. To do this we attach a qubit through an on-chip seventh-order Chebyshev filter to a cold resistor. The filter is engineered such that the leakage transitions are in its passband, while the qubit transition is in its stopband. Dissipation through the filter reduces the lifetime of the transmon's $f$ state, the lowest energy leakage state, by three orders of magnitude to 33 ns, while simultaneously keeping the qubit lifetime to greater than 100 $\mu$s. Even though the $f$ state is transiently populated during a single qubit gate, no negative effect of the filter is detected with errors per gate approaching 1e-4. Modelling the filter as coupled linear harmonic oscillators, our theoretical analysis of the device corroborate our experimental findings. This leakage reduction unit turns leakage errors into errors within the qubit subspace that are correctable with traditional quantum error correction. We demonstrate the operation of the filter as leakage reduction unit in a mock-up of a single-qubit quantum error correcting cycle, showing that the filter increases the seepage rate back to the qubit subspace.
Related papers
- Protected Fluxonium Control with Sub-harmonic Parametric Driving [0.0]
We show a novel control scheme for superconducting fluxonium qubits that eliminates qubit decay through the control channel.
Adding a low-pass filter on the flux line allows for flux-biasing and at the same time coherently controlling the fluxonium qubit.
We demonstrate coherent control with up to 11-photon sub-harmonic drives, highlighting the strong non-linearity of the fluxonium potential.
arXiv Detail & Related papers (2024-10-01T08:27:19Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
We show that a "dual-rail qubit" consisting of a pair of resonantly coupled transmons can form a highly coherent erasure qubit.
We demonstrate mid-circuit detection of erasure errors while introducing $ 0.1%$ dephasing error per check.
This work establishes transmon-based dual-rail qubits as an attractive building block for hardware-efficient quantum error correction.
arXiv Detail & Related papers (2023-07-17T18:00:01Z) - All-microwave leakage reduction units for quantum error correction with
superconducting transmon qubits [0.0]
Minimizing leakage from computational states is a challenge when using superconducting quantum circuits as qubits.
We realize and extend the quantum-hardware-efficient, all-microwave leakage reduction unit (LRU) for transmons in a circuit QED architecture proposed by Battistel et al.
This LRU effectively reduces leakage in the second- and third-excited transmon states with up to $99% $ efficacy in $220mathrmns$, with minimum impact on the qubit subspace.
arXiv Detail & Related papers (2023-02-20T10:10:53Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC)
Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle.
We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 times 10-3$ throughout the entire device.
arXiv Detail & Related papers (2022-11-09T07:54:35Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Fast high-fidelity composite gates in superconducting qubits: Beating
the Fourier leakage limit [0.0]
We present a method for quantum control in superconducting qubits, which overcomes the Fourier limit for the gate duration imposed by leakage to upper states.
We use our approach to produce complete and partial population transfer between the qubit states, as well as the three basic single-qubit quantum gates.
arXiv Detail & Related papers (2022-05-09T10:10:05Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - A hardware-efficient leakage-reduction scheme for quantum error
correction with superconducting transmon qubits [1.6328866317851185]
Leakage outside of the qubit computational subspace poses a threatening challenge to quantum error correction (QEC)
We propose a scheme using two leakage-reduction units (LRUs) that mitigate these issues for a transmon-based surface code.
We show that this leads to a significant reduction of the logical error rate.
arXiv Detail & Related papers (2021-02-16T18:21:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.