All-microwave leakage reduction units for quantum error correction with
superconducting transmon qubits
- URL: http://arxiv.org/abs/2302.09876v2
- Date: Wed, 22 Mar 2023 12:43:32 GMT
- Title: All-microwave leakage reduction units for quantum error correction with
superconducting transmon qubits
- Authors: J. F. Marques, H. Ali, B. M. Varbanov, M. Finkel, H. M. Veen, S. L. M.
van der Meer, S. Valles-Sanclemente, N. Muthusubramanian, M. Beekman, N.
Haider, B. M. Terhal, L. DiCarlo
- Abstract summary: Minimizing leakage from computational states is a challenge when using superconducting quantum circuits as qubits.
We realize and extend the quantum-hardware-efficient, all-microwave leakage reduction unit (LRU) for transmons in a circuit QED architecture proposed by Battistel et al.
This LRU effectively reduces leakage in the second- and third-excited transmon states with up to $99% $ efficacy in $220mathrmns$, with minimum impact on the qubit subspace.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Minimizing leakage from computational states is a challenge when using
many-level systems like superconducting quantum circuits as qubits. We realize
and extend the quantum-hardware-efficient, all-microwave leakage reduction unit
(LRU) for transmons in a circuit QED architecture proposed by Battistel et al.
This LRU effectively reduces leakage in the second- and third-excited transmon
states with up to $99\% $ efficacy in $220~\mathrm{ns}$, with minimum impact on
the qubit subspace. As a first application in the context of quantum error
correction, we demonstrate the ability of multiple simultaneous LRUs to reduce
the error detection rate and to suppress leakage buildup within $1\%$ in data
and ancilla qubits over 50 cycles of a weight-2 parity measurement.
Related papers
- High-fidelity gates in a transmon using bath engineering for passive leakage reset [65.46249968484794]
Leakage, the occupation of any state not used in the computation, is one of the most devastating errors in quantum error correction.
We demonstrate a device which reduces the lifetimes of the leakage states in the transmon by three orders of magnitude.
arXiv Detail & Related papers (2024-11-06T18:28:49Z) - Coupler-Assisted Leakage Reduction for Scalable Quantum Error Correction with Superconducting Qubits [18.641408987868154]
leakage into non-computational states is a common issue in quantum systems including superconducting circuits.
We propose and demonstrate a leakage reduction scheme utilizing tunable couplers, a widely adopted ingredient in large-scale superconducting quantum processors.
We further reduce leakage to higher qubit levels with high efficiency (98.1%) and low error rate on the computational subspace (0.58%), suppressing time-correlated errors during QEC cycles.
arXiv Detail & Related papers (2024-03-24T13:46:41Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Model-based Optimization of Superconducting Qubit Readout [59.992881941624965]
We demonstrate model-based readout optimization for superconducting qubits.
We observe 1.5% error per qubit with a 500ns end-to-end duration and minimal excess reset error from residual resonator photons.
This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.
arXiv Detail & Related papers (2023-08-03T23:30:56Z) - Dual-rail encoding with superconducting cavities [2.003418126964701]
We introduce the circuit-Quantum Electrodynamics (QED) dual-rail qubit in which our physical qubit is encoded in the single-photon subspace of two superconducting microwave cavities.
We describe how to perform a gate-based set of universal operations that includes state preparation, logical readout, and parametrizable single and two-qubit gates.
arXiv Detail & Related papers (2022-12-22T23:21:39Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC)
Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle.
We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 times 10-3$ throughout the entire device.
arXiv Detail & Related papers (2022-11-09T07:54:35Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - A hardware-efficient leakage-reduction scheme for quantum error
correction with superconducting transmon qubits [1.6328866317851185]
Leakage outside of the qubit computational subspace poses a threatening challenge to quantum error correction (QEC)
We propose a scheme using two leakage-reduction units (LRUs) that mitigate these issues for a transmon-based surface code.
We show that this leads to a significant reduction of the logical error rate.
arXiv Detail & Related papers (2021-02-16T18:21:41Z) - Correlated Charge Noise and Relaxation Errors in Superconducting Qubits [0.0]
We characterize a superconducting multiqubit circuit and find that charge fluctuations are highly correlated on a length scale over 600$mu$m.
The resulting correlated errors are explained in terms of the charging event and phonon-mediated quasiparticle poisoning associated with absorption of gamma rays and cosmic-ray muons in the qubit substrate.
arXiv Detail & Related papers (2020-12-10T23:49:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.