Multiplexed Readout of Superconducting Qubits Using a 3D Re-entrant Cavity Filter
- URL: http://arxiv.org/abs/2412.14853v2
- Date: Fri, 20 Dec 2024 14:04:47 GMT
- Title: Multiplexed Readout of Superconducting Qubits Using a 3D Re-entrant Cavity Filter
- Authors: Mustafa Bakr, Simone D. Fasciati, Shuxiang Cao, Giulio Campanaro, James Wills, Mohammed Alghadeer, Michele Piscitelli, Boris Shteynas, Vivek Chidambaram, Peter J. Leek,
- Abstract summary: We present a 3D re-entrant cavity filter designed for frequency-multiplexed readout of superconducting qubits.
The cavity filter is situated out of the plane of the qubit circuit and capacitively couples to an array of on-chip readout resonators in a manner that can scale to large qubit arrays.
- Score: 0.0
- License:
- Abstract: Hardware efficient methods for high fidelity quantum state measurements are crucial for superconducting qubit experiments, as qubit numbers grow and feedback and state reset begin to be employed for quantum error correction. We present a 3D re-entrant cavity filter designed for frequency-multiplexed readout of superconducting qubits. The cavity filter is situated out of the plane of the qubit circuit and capacitively couples to an array of on-chip readout resonators in a manner that can scale to large qubit arrays. The re-entrant cavity functions as a large-linewidth bandpass filter with intrinsic Purcell filtering. We demonstrate the concept with a four-qubit multiplexed device.
Related papers
- High-fidelity gates in a transmon using bath engineering for passive leakage reset [65.46249968484794]
Leakage, the occupation of any state not used in the computation, is one of the most devastating errors in quantum error correction.
We demonstrate a device which reduces the lifetimes of the leakage states in the transmon by three orders of magnitude.
arXiv Detail & Related papers (2024-11-06T18:28:49Z) - Fast multiplexed superconducting qubit readout with intrinsic Purcell filtering [2.0628957149004683]
In superconducting quantum circuits, fast qubit measurement has been achieved using a dispersively coupled resonator with a large external linewidth.
This necessitates the use of a Purcell filter that protects the qubit from relaxation through the readout channel.
Here we show that a readout resonator and filter resonator, coupled to each other both capacitively and inductively, can produce a compact notch-filter circuit.
arXiv Detail & Related papers (2024-09-08T04:06:53Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Broadband Bandpass Purcell Filter for Circuit Quantum Electrodynamics [5.250183242080687]
In circuit quantum electrodynamics (QED), qubits are typically measured using dispersively-coupled readout resonators.
Inserting a Purcell filter counters this effect while maintaining high readout fidelity, but reduces measurement bandwidth and thus limits multiplexing readout capacity.
We develop and implement a multi-stage bandpass Purcell filter that yields better qubit protection while simultaneously increasing measurement bandwidth and multiplexed capacity.
arXiv Detail & Related papers (2023-06-09T21:10:32Z) - Wideband Josephson Parametric Isolator [0.0]
We present an alternative two-port isolating integrated circuit derived from the DC Superconducting Quantum Interference Device (DC-SQUID)
Non-reciprocal transmission is achieved using the three-wave microwave mixing properties of a flux-modulated DC--SQUID.
arXiv Detail & Related papers (2022-12-16T16:39:21Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Anti-crosstalk high-fidelity state discrimination for superconducting
qubits [3.886248147345244]
Current methods for classifying states of single qubit in a superconducting multi-qubit system produce fidelities lower than expected due to the existence of crosstalk.
We make the digital signal processing (DSP) system used in measurement into a shallow neural network and train it to be an optimal classifier to reduce the impact of crosstalk.
arXiv Detail & Related papers (2021-03-16T10:39:42Z) - Dispersive measurement of a semiconductor double quantum dot via 3D
integration of a high-impedance TiN resonator [0.0]
One major challenge to scaling quantum dot spin qubits is the dense wiring requirements.
We describe a method to solve this problem by spacing the qubits out using high-impedance superconducting resonators.
This work paves the way for 2D quantum dot qubit arrays with cavity mediated interactions.
arXiv Detail & Related papers (2020-11-17T16:39:11Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.