論文の概要: Optimizing Quantum Circuits, Fast and Slow
- arxiv url: http://arxiv.org/abs/2411.04104v1
- Date: Wed, 06 Nov 2024 18:34:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:22:28.763363
- Title: Optimizing Quantum Circuits, Fast and Slow
- Title(参考訳): 高速・低速な量子回路の最適化
- Authors: Amanda Xu, Abtin Molavi, Swamit Tannu, Aws Albarghouthi,
- Abstract要約: 本稿では,リライトと再合成を抽象回路変換として考えるための枠組みを提案する。
次に,量子回路を最適化するアルゴリズムGUOQを提案する。
- 参考スコア(独自算出の注目度): 7.543907169342984
- License:
- Abstract: Optimizing quantum circuits is critical: the number of quantum operations needs to be minimized for a successful evaluation of a circuit on a quantum processor. In this paper we unify two disparate ideas for optimizing quantum circuits, rewrite rules, which are fast standard optimizer passes, and unitary synthesis, which is slow, requiring a search through the space of circuits. We present a clean, unifying framework for thinking of rewriting and resynthesis as abstract circuit transformations. We then present a radically simple algorithm, GUOQ, for optimizing quantum circuits that exploits the synergies of rewriting and resynthesis. Our extensive evaluation demonstrates the ability of GUOQ to strongly outperform existing optimizers on a wide range of benchmarks.
- Abstract(参考訳): 量子プロセッサ上の回路の評価を成功させるためには、量子演算の数を最小化する必要がある。
本稿では,量子回路の最適化,高速な標準オプティマイザパスである書き直し規則,低速で回路空間を探索するユニタリ合成の2つの異なるアイデアを統一する。
本稿では,書き換えと再合成を抽象回路変換として考えるための,クリーンで統一的なフレームワークを提案する。
次に、書き換えと再合成の相乗効果を利用する量子回路を最適化するための、根本的に単純なアルゴリズムGUOQを提案する。
我々の広範な評価は、GUOQが、幅広いベンチマークで既存のオプティマイザを強力に上回る能力を示している。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Quantum Circuit Unoptimization [0.6449786007855248]
我々は、量子回路最適化と呼ばれる量子アルゴリズムプリミティブを構築する。
回路等価性を保ちながらいくつかの冗長性を導入することで、与えられた量子回路複合体を作る。
我々は、量子回路の最適化を用いて、コンパイラベンチマークを生成し、回路最適化性能を評価する。
論文 参考訳(メタデータ) (2023-11-07T08:38:18Z) - Quantum Circuit Optimization through Iteratively Pre-Conditioned
Gradient Descent [0.4915744683251151]
量子回路を最適化し、状態準備と量子アルゴリズムの実装のための性能高速化を示すために、繰り返し事前条件勾配降下(IPG)を行う。
4量子W状態と最大絡み合った5量子GHZ状態を作成するための104ドルの係数による忠実度の向上を示す。
また、IPGを用いて量子フーリエ変換のユニタリを最適化するゲインを示し、IonQの量子処理ユニット(QPU)上でそのような最適化された回路の実行結果を報告する。
論文 参考訳(メタデータ) (2023-09-18T17:30:03Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
我々は、量子回路の最適化にグラフニューラルネットワーク(GNN)オートエンコーダの使い方を初めて提示する。
我々は、量子回路から有向非巡回グラフを構築し、そのグラフを符号化し、その符号化を用いてRL状態を表現する。
我々の手法は、非常に大規模なRL量子回路最適化に向けた最初の現実的な第一歩である。
論文 参考訳(メタデータ) (2023-03-06T16:51:30Z) - Synthesizing Quantum-Circuit Optimizers [7.111661677477926]
QUESOは、与えられた量子デバイスに対する量子回路を自動的に合成する効率的なアプローチである。
例えば、1.2分で、QUESOは高い確率保証で正しさを合成できる。
論文 参考訳(メタデータ) (2022-11-17T17:30:20Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Quantum Gate Pattern Recognition and Circuit Optimization for Scientific
Applications [1.6329956884407544]
回路最適化のための2つのアイデアを導入し、AQCELと呼ばれる多層量子回路最適化プロトコルに組み合わせる。
AQCELは、高エネルギー物理学における最終状態の放射をモデル化するために設計された反復的で効率的な量子アルゴリズム上に展開される。
我々の手法は汎用的であり、様々な量子アルゴリズムに有用である。
論文 参考訳(メタデータ) (2021-02-19T16:20:31Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
最小限のフォールトトレラント量子コンピュータで試すのに、最適化のための量子アルゴリズムが最も実用的であるかを探る。
この結果から,2次高速化のみを実現する量子最適化が,古典的アルゴリズムよりも有利であるという考えが否定される。
論文 参考訳(メタデータ) (2020-07-14T22:54:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。