UnityGraph: Unified Learning of Spatio-temporal features for Multi-person Motion Prediction
- URL: http://arxiv.org/abs/2411.04151v1
- Date: Wed, 06 Nov 2024 08:05:36 GMT
- Title: UnityGraph: Unified Learning of Spatio-temporal features for Multi-person Motion Prediction
- Authors: Kehua Qu, Rui Ding, Jin Tang,
- Abstract summary: Multi-person motion prediction is a complex emerging field with significant real-world applications.
We propose a novel graph structure UnityGraph, which treats multi-temporal features as a whole, enhancing model coherence and couplings-temporal features.
Our method achieves the state-of-the-art performance, confirming its effectiveness and innovative design.
- Score: 13.052342503276936
- License:
- Abstract: Multi-person motion prediction is a complex and emerging field with significant real-world applications. Current state-of-the-art methods typically adopt dual-path networks to separately modeling spatial features and temporal features. However, the uncertain compatibility of the two networks brings a challenge for spatio-temporal features fusion and violate the spatio-temporal coherence and coupling of human motions by nature. To address this issue, we propose a novel graph structure, UnityGraph, which treats spatio-temporal features as a whole, enhancing model coherence and coupling.spatio-temporal features as a whole, enhancing model coherence and coupling. Specifically, UnityGraph is a hypervariate graph based network. The flexibility of the hypergraph allows us to consider the observed motions as graph nodes. We then leverage hyperedges to bridge these nodes for exploring spatio-temporal features. This perspective considers spatio-temporal dynamics unitedly and reformulates multi-person motion prediction into a problem on a single graph. Leveraging the dynamic message passing based on this hypergraph, our model dynamically learns from both types of relations to generate targeted messages that reflect the relevance among nodes. Extensive experiments on several datasets demonstrates that our method achieves state-of-the-art performance, confirming its effectiveness and innovative design.
Related papers
- COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for
Traffic Forecasting [10.392021668859272]
This paper proposes Conjoint Spatio-Temporal graph neural network (abbreviated as COOL), which models heterogeneous graphs from prior and posterior information to conjointly capture high-order-temporal relationships.
To capture diverse transitional properties to enhance traffic forecasting, we propose a conjoint-attention decoder that models diverse temporal patterns from both multi-rank and multi-scale views.
arXiv Detail & Related papers (2024-03-02T04:30:09Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Dynamic Graph Convolutional Network with Attention Fusion for Traffic
Flow Prediction [10.3426659705376]
We propose a novel dynamic graph convolution network with attention fusion to model synchronous spatial-temporal correlations.
We conduct extensive experiments in four real-world traffic datasets to demonstrate that our method surpasses state-of-the-art performance compared to 18 baseline methods.
arXiv Detail & Related papers (2023-02-24T12:21:30Z) - Multi-Task Edge Prediction in Temporally-Dynamic Video Graphs [16.121140184388786]
We propose MTD-GNN, a graph network for predicting temporally-dynamic edges for multiple types of relations.
We show that modeling multiple relations in our temporal-dynamic graph network can be mutually beneficial.
arXiv Detail & Related papers (2022-12-06T10:41:00Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
Existing works merely view a dynamic graph as a sequence of changes.
We formulate dynamic graphs as temporal edge sequences associated with joining time of.
vertex and timespan of edges.
A time-aware Transformer is proposed to embed.
vertex' dynamic connections and ToEs into the learned.
vertex representations.
arXiv Detail & Related papers (2022-07-01T15:32:56Z) - Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph
Attention [20.52864145999387]
Long-term tensor-temporal forecasting (LSTF) makes use of long-term dependency between spatial and temporal domains, contextual information, and inherent pattern in the data.
We propose new graph models to represent the contextual information of each node and the long-term parking revealed-temporal data dependency structure.
Our proposed approaches significantly improve the performance of existing graph neural network models in LSTF prediction tasks.
arXiv Detail & Related papers (2022-04-23T06:51:37Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.