Quantum Magic and Computational Complexity in the Neutrino Sector
- URL: http://arxiv.org/abs/2411.04203v1
- Date: Wed, 06 Nov 2024 19:02:30 GMT
- Title: Quantum Magic and Computational Complexity in the Neutrino Sector
- Authors: Ivan Chernyshev, Caroline E. P. Robin, Martin J. Savage,
- Abstract summary: Mapping the three-flavorneutrino system to qutrits, the evolution of quantum magic is explored.
These results highlight the connection between the complexity in simulating quantum physical systems and the parameters of the Standard Model.
- Score: 0.0
- License:
- Abstract: We consider the quantum magic in systems of dense neutrinos undergoing coherent flavor transformations, relevant for supernova and neutron-star binary mergers. Mapping the three-flavor-neutrino system to qutrits, the evolution of quantum magic is explored in the single scattering angle limit for a selection of initial tensor-product pure states for $N_\nu \le 8$ neutrinos. For $|\nu_e\rangle^{\otimes N_\nu}$ initial states, the magic, as measured by the $\alpha=2$ stabilizer Renyi entropy $M_2$, is found to decrease with radial distance from the neutrino sphere, reaching a value that lies below the maximum for tensor-product qutrit states. Further, the asymptotic magic per neutrino, $M_2/N_\nu$, decreases with increasing $N_\nu$. In contrast, the magic evolving from states containing all three flavors reaches values only possible with entanglement, with the asymptotic $M_2/N_\nu$ increasing with $N_\nu$. These results highlight the connection between the complexity in simulating quantum physical systems and the parameters of the Standard Model.
Related papers
- Direct Experimental Constraints on the Spatial Extent of a Neutrino Wavepacket [0.4303687694525454]
neutrinos are the least understood fundamental particles of nature.
quantum properties of neutrinos emitted in experimentally relevant sources are virtually unknown.
Lower limit on the spatial uncertainty of the recoil daughter was found to be $sigma_textrmN, x geq 6.2$,pm.
arXiv Detail & Related papers (2024-04-03T23:02:17Z) - Once-in-a-lifetime encounter models for neutrino media: From coherent oscillations to flavor equilibration [0.0]
We develop new quantum models for neutrino gases in which any pair of neutrinos can interact at most once in their lifetimes.
These models demonstrate the emergence of coherent flavor oscillations from the particle perspective.
arXiv Detail & Related papers (2024-02-07T16:43:27Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Cooperative quantum tunneling of the magnetization in Fe-doped Li$_3$N [0.0]
The spin-reversal in dilute Li$$$(Li$_1-x$Fe$_x$)N with $x 1$ % is dominated by resonant quantum tunneling of spatially well-separated states.
We report on the effect of finite couplings between those states that give rise to cooperative, simultaneous quantum tunneling of two spins.
arXiv Detail & Related papers (2023-10-27T14:59:42Z) - Quantum algorithm for the Vlasov simulation of the large-scale structure
formation with massive neutrinos [0.0]
In particular, massive neutrino affects the formation of the large-scale structure (LSS) of the universe.
We perform the Hamiltonian simulation to produce quantum states that encode the phase space distribution of neutrino.
This is the first quantum algorithm for the LSS simulation that outputs the quantity of practical interest with guaranteed accuracy.
arXiv Detail & Related papers (2023-10-03T06:56:03Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Geuine tripartite entanglement in three-flavor neutrino oscillations [7.710489214551867]
A new genuine tripartite entanglement measure [S. B. Xie et al., Phys. Rev. Lett. 127, 040403 (2021)], concurrence fill, is defined as the square root of the area of the concurrence triangle satisfying all genuine multipartite entanglement conditions.
Here, we focus on using concurrence fill to quantify the tripartite entanglement in three-flavor NOs.
In both cases, we compare its performance with other three tripartite entanglement measures, including the generalized geometric measure (GGM), the three-$pi$ entanglement, and the genuinely multipartite concurrence (GMC), in the neutrino propagation
arXiv Detail & Related papers (2022-05-23T05:54:04Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.