Approximate Equivariance in Reinforcement Learning
- URL: http://arxiv.org/abs/2411.04225v1
- Date: Wed, 06 Nov 2024 19:44:46 GMT
- Title: Approximate Equivariance in Reinforcement Learning
- Authors: Jung Yeon Park, Sujay Bhatt, Sihan Zeng, Lawson L. S. Wong, Alec Koppel, Sumitra Ganesh, Robin Walters,
- Abstract summary: Equivariant neural networks have shown great success in reinforcement learning.
In many problems, only approximate symmetry is present, which makes imposing exact symmetry inappropriate.
We develop approximately equivariant algorithms in reinforcement learning.
- Score: 35.04248486334824
- License:
- Abstract: Equivariant neural networks have shown great success in reinforcement learning, improving sample efficiency and generalization when there is symmetry in the task. However, in many problems, only approximate symmetry is present, which makes imposing exact symmetry inappropriate. Recently, approximately equivariant networks have been proposed for supervised classification and modeling physical systems. In this work, we develop approximately equivariant algorithms in reinforcement learning (RL). We define approximately equivariant MDPs and theoretically characterize the effect of approximate equivariance on the optimal Q function. We propose novel RL architectures using relaxed group convolutions and experiment on several continuous control domains and stock trading with real financial data. Our results demonstrate that approximate equivariance matches prior work when exact symmetries are present, and outperforms them when domains exhibit approximate symmetry. As an added byproduct of these techniques, we observe increased robustness to noise at test time.
Related papers
- Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks [43.88179780450706]
We investigate the impact of weight space permutation symmetries on variational inference.
We devise a symmetric symmetrization mechanism for constructing permutation invariant variational posteriors.
We show that the symmetrized distribution has a strictly better fit to the true posterior, and that it can be trained using the original ELBO objective.
arXiv Detail & Related papers (2024-08-10T09:06:34Z) - Symmetry Breaking and Equivariant Neural Networks [17.740760773905986]
We introduce a novel notion of'relaxed equiinjection'
We show how to incorporate this relaxation into equivariant multilayer perceptronrons (E-MLPs)
The relevance of symmetry breaking is then discussed in various application domains.
arXiv Detail & Related papers (2023-12-14T15:06:48Z) - Learning Layer-wise Equivariances Automatically using Gradients [66.81218780702125]
Convolutions encode equivariance symmetries into neural networks leading to better generalisation performance.
symmetries provide fixed hard constraints on the functions a network can represent, need to be specified in advance, and can not be adapted.
Our goal is to allow flexible symmetry constraints that can automatically be learned from data using gradients.
arXiv Detail & Related papers (2023-10-09T20:22:43Z) - The Surprising Effectiveness of Equivariant Models in Domains with
Latent Symmetry [6.716931832076628]
We show that imposing symmetry constraints that do not exactly match the domain symmetry is very helpful in learning the true symmetry in the environment.
We demonstrate that an equivariant model can significantly outperform non-equivariant methods on domains with latent symmetries both in supervised learning and in reinforcement learning for robotic manipulation and control problems.
arXiv Detail & Related papers (2022-11-16T21:51:55Z) - The Lie Derivative for Measuring Learned Equivariance [84.29366874540217]
We study the equivariance properties of hundreds of pretrained models, spanning CNNs, transformers, and Mixer architectures.
We find that many violations of equivariance can be linked to spatial aliasing in ubiquitous network layers, such as pointwise non-linearities.
For example, transformers can be more equivariant than convolutional neural networks after training.
arXiv Detail & Related papers (2022-10-06T15:20:55Z) - Relaxing Equivariance Constraints with Non-stationary Continuous Filters [20.74154804898478]
The proposed parameterization can be thought of as a building block to allow adjustable symmetry structure in neural networks.
Compared to non-equivariant or strict-equivariant baselines, we experimentally verify that soft equivariance leads to improved performance in terms of test accuracy on CIFAR-10 and CIFAR-100 image classification tasks.
arXiv Detail & Related papers (2022-04-14T18:08:36Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Learning Invariances in Neural Networks [51.20867785006147]
We show how to parameterize a distribution over augmentations and optimize the training loss simultaneously with respect to the network parameters and augmentation parameters.
We can recover the correct set and extent of invariances on image classification, regression, segmentation, and molecular property prediction from a large space of augmentations.
arXiv Detail & Related papers (2020-10-22T17:18:48Z) - Group Equivariant Deep Reinforcement Learning [4.997686360064921]
We propose the use of Equivariant CNNs to train RL agents and study their inductive bias for transformation equivariant Q-value approximation.
We demonstrate that equivariant architectures can dramatically enhance the performance and sample efficiency of RL agents in a highly symmetric environment.
arXiv Detail & Related papers (2020-07-01T02:38:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.