The Surprising Effectiveness of Equivariant Models in Domains with
Latent Symmetry
- URL: http://arxiv.org/abs/2211.09231v1
- Date: Wed, 16 Nov 2022 21:51:55 GMT
- Title: The Surprising Effectiveness of Equivariant Models in Domains with
Latent Symmetry
- Authors: Dian Wang, Jung Yeon Park, Neel Sortur, Lawson L.S. Wong, Robin
Walters, Robert Platt
- Abstract summary: We show that imposing symmetry constraints that do not exactly match the domain symmetry is very helpful in learning the true symmetry in the environment.
We demonstrate that an equivariant model can significantly outperform non-equivariant methods on domains with latent symmetries both in supervised learning and in reinforcement learning for robotic manipulation and control problems.
- Score: 6.716931832076628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extensive work has demonstrated that equivariant neural networks can
significantly improve sample efficiency and generalization by enforcing an
inductive bias in the network architecture. These applications typically assume
that the domain symmetry is fully described by explicit transformations of the
model inputs and outputs. However, many real-life applications contain only
latent or partial symmetries which cannot be easily described by simple
transformations of the input. In these cases, it is necessary to learn symmetry
in the environment instead of imposing it mathematically on the network
architecture. We discover, surprisingly, that imposing equivariance constraints
that do not exactly match the domain symmetry is very helpful in learning the
true symmetry in the environment. We differentiate between extrinsic and
incorrect symmetry constraints and show that while imposing incorrect symmetry
can impede the model's performance, imposing extrinsic symmetry can actually
improve performance. We demonstrate that an equivariant model can significantly
outperform non-equivariant methods on domains with latent symmetries both in
supervised learning and in reinforcement learning for robotic manipulation and
control problems.
Related papers
- Approximate Equivariance in Reinforcement Learning [35.04248486334824]
Equivariant neural networks have shown great success in reinforcement learning.
In many problems, only approximate symmetry is present, which makes imposing exact symmetry inappropriate.
We develop approximately equivariant algorithms in reinforcement learning.
arXiv Detail & Related papers (2024-11-06T19:44:46Z) - Learning Infinitesimal Generators of Continuous Symmetries from Data [15.42275880523356]
We propose a novel symmetry learning algorithm based on transformations defined with one- parameter groups.
Our method is built upon minimal inductive biases, encompassing not only commonly utilized symmetries rooted in Lie groups but also extending to symmetries derived from nonlinear generators.
arXiv Detail & Related papers (2024-10-29T08:28:23Z) - Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Symmetry Breaking and Equivariant Neural Networks [17.740760773905986]
We introduce a novel notion of'relaxed equiinjection'
We show how to incorporate this relaxation into equivariant multilayer perceptronrons (E-MLPs)
The relevance of symmetry breaking is then discussed in various application domains.
arXiv Detail & Related papers (2023-12-14T15:06:48Z) - Learning Layer-wise Equivariances Automatically using Gradients [66.81218780702125]
Convolutions encode equivariance symmetries into neural networks leading to better generalisation performance.
symmetries provide fixed hard constraints on the functions a network can represent, need to be specified in advance, and can not be adapted.
Our goal is to allow flexible symmetry constraints that can automatically be learned from data using gradients.
arXiv Detail & Related papers (2023-10-09T20:22:43Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
We introduce a flexible framework relying on frameaveraging (SFA) to make any model E(3)-equivariant or invariant through data transformations.
We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling.
arXiv Detail & Related papers (2023-04-28T21:48:31Z) - Learning Symmetric Embeddings for Equivariant World Models [9.781637768189158]
We propose learning symmetric embedding networks (SENs) that encode an input space (e.g. images)
This network can be trained end-to-end with an equivariant task network to learn an explicitly symmetric representation.
Our experiments demonstrate that SENs facilitate the application of equivariant networks to data with complex symmetry representations.
arXiv Detail & Related papers (2022-04-24T22:31:52Z) - Approximately Equivariant Networks for Imperfectly Symmetric Dynamics [24.363954435050264]
We find that our models can outperform both baselines with no symmetry bias and baselines with overly strict symmetry in both simulated turbulence domains and real-world multi-stream jet flow.
arXiv Detail & Related papers (2022-01-28T07:31:28Z) - Learning Invariances in Neural Networks [51.20867785006147]
We show how to parameterize a distribution over augmentations and optimize the training loss simultaneously with respect to the network parameters and augmentation parameters.
We can recover the correct set and extent of invariances on image classification, regression, segmentation, and molecular property prediction from a large space of augmentations.
arXiv Detail & Related papers (2020-10-22T17:18:48Z) - Inverse Learning of Symmetries [71.62109774068064]
We learn the symmetry transformation with a model consisting of two latent subspaces.
Our approach is based on the deep information bottleneck in combination with a continuous mutual information regulariser.
Our model outperforms state-of-the-art methods on artificial and molecular datasets.
arXiv Detail & Related papers (2020-02-07T13:48:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.