論文の概要: Bayesian Inference in Recurrent Explicit Duration Switching Linear Dynamical Systems
- arxiv url: http://arxiv.org/abs/2411.04280v1
- Date: Wed, 06 Nov 2024 21:58:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:40:27.145284
- Title: Bayesian Inference in Recurrent Explicit Duration Switching Linear Dynamical Systems
- Title(参考訳): リニア力学系における繰り返し時間切替時のベイズ推定
- Authors: Mikołaj Słupiński, Piotr Lipiński,
- Abstract要約: Recurrent Explicit Duration Switching Linear Dynamical Systems (REDSLDS) と呼ばれる新しいモデルを提案する。
また, P'olya-gamma augmentation を用いた推論および学習手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we propose a novel model called Recurrent Explicit Duration Switching Linear Dynamical Systems (REDSLDS) that incorporates recurrent explicit duration variables into the rSLDS model. We also propose an inference and learning scheme that involves the use of P\'olya-gamma augmentation. We demonstrate the improved segmentation capabilities of our model on three benchmark datasets, including two quantitative datasets and one qualitative dataset.
- Abstract(参考訳): 本稿では,リカレントな持続時間変数をrSLDSモデルに組み込んだRecurrent Explicit Duration Switching Linear Dynamical Systems (REDSLDS)を提案する。
また, P'olya-gamma augmentation を用いた推論および学習手法を提案する。
2つの定量的データセットと1つの定性的データセットを含む3つのベンチマークデータセット上で、モデルのセグメンテーション機能の改善を実証した。
関連論文リスト
- Off-dynamics Conditional Diffusion Planners [15.321049697197447]
この研究は、オフラインRLにおけるデータ不足の課題に対処するために、より容易に利用できるオフダイナミックスデータセットの使用を探求する。
本研究では,DPMを用いた大規模オフダイナミックスデータセットと限定ターゲットデータセットの連成分布の学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-16T04:56:43Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
本稿では,各レシスタンスに対してDAG(Directed Acyclic Graph)を同時に学習する,新たな最適化手法(線形)を提案する。
我々は広範囲な実験を行い、その手法が様々な環境における因果発見モデルより一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-11-02T17:26:49Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
アクティブラーニングは、モデルのパラメータに適合するために必要なデータ量を削減しようとする。
潜在変数モデルは神経科学、心理学、その他の様々な工学、科学分野において重要な役割を果たす。
論文 参考訳(メタデータ) (2022-02-27T19:07:12Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
状態依存型と時間依存型の両方のスイッチングダイナミクスを識別できるフレキシブルモデルを提案する。
状態依存スイッチングは、リカレントな状態-スイッチ接続によって実現される。
時間依存スイッチング動作を改善するために、明示的な期間カウント変数が使用される。
論文 参考訳(メタデータ) (2021-10-26T17:35:21Z) - Time Series Forecasting Using Manifold Learning [6.316185724124034]
本研究では,高次元時系列の予測のための多様体学習に基づく3層数値フレームワークを提案する。
最初のステップでは、非線形多様体学習アルゴリズムを用いて、時系列を低次元空間に埋め込む。
2番目のステップでは、埋め込み力学を予測するために、多様体上の低次回帰モデルを構築する。
最後のステップでは、埋め込み時系列を元の高次元空間に戻します。
論文 参考訳(メタデータ) (2021-10-07T17:09:59Z) - Stacking VAE with Graph Neural Networks for Effective and Interpretable
Time Series Anomaly Detection [5.935707085640394]
本研究では,実効かつ解釈可能な時系列異常検出のための,グラフニューラルネットワークを用いた自動エンコーダ(VAE)モデルを提案する。
我々は,提案モデルが3つの公開データセットの強いベースラインを上回っており,大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-05-18T09:50:00Z) - Estimation of Switched Markov Polynomial NARX models [75.91002178647165]
非線形自己回帰(NARX)成分を特徴とするハイブリッド力学系のモデル群を同定する。
提案手法は, 特定の回帰器を持つ3つの非線形サブモデルからなるSMNARX問題に対して実証される。
論文 参考訳(メタデータ) (2020-09-29T15:00:47Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
本稿では,時系列データにおける高変数の取得に優れる新しい確率的シーケンスモデルを提案する。
提案手法では,時間潜時変数を用いて基礎となるデータパターンに関する情報をキャプチャする。
提案手法の有効性を,合成および実世界のシーケンシャルデータに示す。
論文 参考訳(メタデータ) (2020-02-24T19:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。