論文の概要: Robust Real-Time Mortality Prediction in the Intensive Care Unit using Temporal Difference Learning
- arxiv url: http://arxiv.org/abs/2411.04285v1
- Date: Wed, 06 Nov 2024 22:11:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:55.982656
- Title: Robust Real-Time Mortality Prediction in the Intensive Care Unit using Temporal Difference Learning
- Title(参考訳): 時間差学習を用いた集中治療室におけるロバストリアルタイム死亡予測
- Authors: Thomas Frost, Kezhi Li, Steve Harris,
- Abstract要約: 時間差学習(TD)学習は、学習を終末結果ではなく状態遷移のパターンに一般化することで、分散を減らすことができる。
本研究では,Semi-Markov Reward Processを用いて,実時間不規則な時系列データにTD学習を適用するためのフレームワークを定義する。
我々は,集中治療の死亡率を予測するためのモデル枠組みを評価し,この枠組みの下でのTD学習が,標準的な教師付き学習法と比較してモデルロバスト性の向上をもたらすことを示す。
- 参考スコア(独自算出の注目度): 3.6548171581505375
- License:
- Abstract: The task of predicting long-term patient outcomes using supervised machine learning is a challenging one, in part because of the high variance of each patient's trajectory, which can result in the model over-fitting to the training data. Temporal difference (TD) learning, a common reinforcement learning technique, may reduce variance by generalising learning to the pattern of state transitions rather than terminal outcomes. However, in healthcare this method requires several strong assumptions about patient states, and there appears to be limited literature evaluating the performance of TD learning against traditional supervised learning methods for long-term health outcome prediction tasks. In this study, we define a framework for applying TD learning to real-time irregularly sampled time series data using a Semi-Markov Reward Process. We evaluate the model framework in predicting intensive care mortality and show that TD learning under this framework can result in improved model robustness compared to standard supervised learning methods. and that this robustness is maintained even when validated on external datasets. This approach may offer a more reliable method when learning to predict patient outcomes using high-variance irregular time series data.
- Abstract(参考訳): 教師付き機械学習を用いて長期患者の予後を予測するタスクは、部分的には各患者の軌道のばらつきが大きいため、トレーニングデータに過度に適合するモデルになる可能性があるため、難しい課題である。
時間差学習(TD)学習は、学習を終末結果ではなく状態遷移のパターンに一般化することで、分散を減らすことができる。
しかし、医療においては、この方法には患者の状態に関するいくつかの強い仮定が必要であり、TD学習のパフォーマンスを長期健康状態予測タスクにおいて従来の教師付き学習方法と比較して評価する文献は限られているようである。
本研究では,Semi-Markov Reward Processを用いて,実時間不規則な時系列データにTD学習を適用するためのフレームワークを定義する。
我々は,集中治療の死亡率を予測するためのモデル枠組みを評価し,この枠組みの下でのTD学習が,標準的な教師付き学習法と比較してモデルロバスト性の向上をもたらすことを示す。
この堅牢性は、外部データセットで検証しても維持されます。
このアプローチは、高分散不規則時系列データを用いて患者結果を予測する際に、より信頼性の高い方法を提供する。
関連論文リスト
- Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques [6.417777780911223]
本研究は,慢性腎臓病(CKD)から末期腎疾患(ESRD)への進行を予測するために,高度な機械学習とディープラーニング技術を組み合わせた管理クレームデータを活用する可能性を検討する。
我々は、ランダムフォレストやXGBoostといった従来の機械学習手法とLong Short-Term Memory(LSTM)ネットワークのようなディープラーニングアプローチを用いて、大手医療保険会社が提供した包括的10年間のデータセットを分析し、複数の観測窓の予測モデルを開発する。
以上の結果から,LSTMモデル,特に24ヶ月の観測窓を用いた場合,ESRD進行予測において優れた性能を示した。
論文 参考訳(メタデータ) (2024-09-18T16:03:57Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - A Knowledge Distillation Approach for Sepsis Outcome Prediction from
Multivariate Clinical Time Series [2.621671379723151]
我々は、制約付き変分推論による知識蒸留を用いて、強力な「教師」ニューラルネットワークモデルの知識を蒸留する。
我々は「学生」潜在変数モデルを訓練し、解釈可能な隠れ状態表現を学習し、セシス結果予測のための高い予測性能を達成する。
論文 参考訳(メタデータ) (2023-11-16T05:06:51Z) - Contrastive Learning-based Imputation-Prediction Networks for
In-hospital Mortality Risk Modeling using EHRs [9.578930989075035]
本稿では, EHRデータを用いた病院内死亡リスク予測のための, 対照的な学習ベース予測ネットワークを提案する。
本研究は, グラフ解析に基づく患者層形成モデルを用いて, 似通った患者をグループ化する手法を提案する。
2つの実世界のEHRデータセットの実験により、我々のアプローチは、計算タスクと予測タスクの両方において最先端のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-19T03:24:34Z) - Accounting For Informative Sampling When Learning to Forecast Treatment
Outcomes Over Time [66.08455276899578]
適切な基準を満たさない場合,情報サンプリングは治療結果の正確な推定を禁止できることが示唆された。
逆強度重み付けを用いた情報サンプリングの存在下での処理結果を学習するための一般的な枠組みを提案する。
本稿では,ニューラルCDEを用いてこのフレームワークをインスタンス化する新しい手法であるTESAR-CDEを提案する。
論文 参考訳(メタデータ) (2023-06-07T08:51:06Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
分散シフトへの対処は、現代の機械学習における中心的な課題の1つだ。
歴史的情報を適切に再利用するオンライン手法を提案する。
我々の密度比推定法は, ダイナミックなリセットバウンドを楽しむことにより, 良好に動作できることが証明された。
論文 参考訳(メタデータ) (2023-02-06T04:03:33Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Predicting the impact of treatments over time with uncertainty aware
neural differential equations [2.099922236065961]
本稿では,治療の効果を時間とともに予測する新しい手法であるCounterfactual ODEを提案する。
CF-ODEが従来よりも精度の高い予測と信頼性の高い不確実性推定を提供することを示す。
論文 参考訳(メタデータ) (2022-02-24T09:50:02Z) - Learning Predictive and Interpretable Timeseries Summaries from ICU Data [33.787187660310444]
本研究では,ヒトが予測的かつ容易に理解できる臨床時系列の要約を学習するための新しい手法を提案する。
学習した要約は従来の解釈可能なモデルクラスより優れており、病院内死亡率分類タスクにおける最先端のディープラーニングモデルに匹敵する性能を実現している。
論文 参考訳(メタデータ) (2021-09-22T21:14:05Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
時間とともに治療効果を推定するためにCRN(Counterfactual Recurrent Network)を導入する。
CRNは、患者履歴のバランスの取れた表現を構築するために、ドメイン敵のトレーニングを使用する。
本モデルでは, 正解率の予測と適切な治療時期の選択において, 誤差の低減を図っている。
論文 参考訳(メタデータ) (2020-02-10T20:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。