Classification with Conceptual Safeguards
- URL: http://arxiv.org/abs/2411.04342v1
- Date: Thu, 07 Nov 2024 00:41:11 GMT
- Title: Classification with Conceptual Safeguards
- Authors: Hailey Joren, Charles Marx, Berk Ustun,
- Abstract summary: We propose a new approach to promote safety in classification tasks with established concepts.
Our approach -- called a conceptual safeguard -- acts as a verification layer for models.
We benchmark our approach on a collection of real-world and synthetic datasets.
- Score: 7.093692674858257
- License:
- Abstract: We propose a new approach to promote safety in classification tasks with established concepts. Our approach -- called a conceptual safeguard -- acts as a verification layer for models that predict a target outcome by first predicting the presence of intermediate concepts. Given this architecture, a safeguard ensures that a model meets a minimal level of accuracy by abstaining from uncertain predictions. In contrast to a standard selective classifier, a safeguard provides an avenue to improve coverage by allowing a human to confirm the presence of uncertain concepts on instances on which it abstains. We develop methods to build safeguards that maximize coverage without compromising safety, namely techniques to propagate the uncertainty in concept predictions and to flag salient concepts for human review. We benchmark our approach on a collection of real-world and synthetic datasets, showing that it can improve performance and coverage in deep learning tasks.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
Real-world data streams can change unpredictably due to distribution shifts, feedback loops and adversarial actors.
We present a forecasting framework ensuring valid uncertainty estimates regardless of how data evolves.
arXiv Detail & Related papers (2024-09-27T21:46:42Z) - Stochastic Concept Bottleneck Models [8.391254800873599]
Concept Bottleneck Models (CBMs) have emerged as a promising interpretable method whose final prediction is based on human-understandable concepts.
We propose Concept Bottleneck Models (SCBMs), a novel approach that models concept dependencies.
A single-concept intervention affects all correlated concepts, thereby improving intervention effectiveness.
arXiv Detail & Related papers (2024-06-27T15:38:37Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Boosting Adversarial Robustness using Feature Level Stochastic Smoothing [46.86097477465267]
adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks.
In this work, we propose a generic method for introducingity in the network predictions.
We also utilize this for smoothing decision rejecting low confidence predictions.
arXiv Detail & Related papers (2023-06-10T15:11:24Z) - Safe Explicable Planning [3.3869539907606603]
We propose Safe Explicable Planning (SEP) to support the specification of a safety bound.
Our approach generalizes the consideration of multiple objectives stemming from multiple models.
We provide formal proofs that validate the desired theoretical properties of these methods.
arXiv Detail & Related papers (2023-04-04T21:49:02Z) - Understanding and Enhancing Robustness of Concept-based Models [41.20004311158688]
We study robustness of concept-based models to adversarial perturbations.
In this paper, we first propose and analyze different malicious attacks to evaluate the security vulnerability of concept based models.
We then propose a potential general adversarial training-based defense mechanism to increase robustness of these systems to the proposed malicious attacks.
arXiv Detail & Related papers (2022-11-29T10:43:51Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - A general framework for defining and optimizing robustness [74.67016173858497]
We propose a rigorous and flexible framework for defining different types of robustness properties for classifiers.
Our concept is based on postulates that robustness of a classifier should be considered as a property that is independent of accuracy.
We develop a very general robustness framework that is applicable to any type of classification model.
arXiv Detail & Related papers (2020-06-19T13:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.