LidaRefer: Context-aware Outdoor 3D Visual Grounding for Autonomous Driving
- URL: http://arxiv.org/abs/2411.04351v2
- Date: Thu, 31 Jul 2025 08:03:18 GMT
- Title: LidaRefer: Context-aware Outdoor 3D Visual Grounding for Autonomous Driving
- Authors: Yeong-Seung Baek, Heung-Seon Oh,
- Abstract summary: 3D visual grounding aims to locate objects or regions within 3D scenes guided by natural language descriptions.<n>Large-scale outdoor LiDAR scenes are dominated by background points and contain limited foreground information.<n>LidaRefer is a context-aware 3D VG framework for outdoor scenes.
- Score: 1.0589208420411014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D visual grounding (VG) aims to locate objects or regions within 3D scenes guided by natural language descriptions. While indoor 3D VG has advanced, outdoor 3D VG remains underexplored due to two challenges: (1) large-scale outdoor LiDAR scenes are dominated by background points and contain limited foreground information, making cross-modal alignment and contextual understanding more difficult; and (2) most outdoor datasets lack spatial annotations for referential non-target objects, which hinders explicit learning of referential context. To this end, we propose LidaRefer, a context-aware 3D VG framework for outdoor scenes. LidaRefer incorporates an object-centric feature selection strategy to focus on semantically relevant visual features while reducing computational overhead. Then, its transformer-based encoder-decoder architecture excels at establishing fine-grained cross-modal alignment between refined visual features and word-level text features, and capturing comprehensive global context. Additionally, we present Discriminative-Supportive Collaborative localization (DiSCo), a novel supervision strategy that explicitly models spatial relationships between target, contextual, and ambiguous objects for accurate target identification. To enable this without manual labeling, we introduce a pseudo-labeling approach that retrieves 3D localization labels for referential non-target objects. LidaRefer achieves state-of-the-art performance on Talk2Car-3D dataset under various evaluation settings.
Related papers
- Zero-Shot 3D Visual Grounding from Vision-Language Models [10.81711535075112]
3D Visual Grounding (3DVG) seeks to locate target objects in 3D scenes using natural language descriptions.<n>We present SeeGround, a zero-shot 3DVG framework that leverages 2D Vision-Language Models (VLMs) to bypass the need for 3D-specific training.
arXiv Detail & Related papers (2025-05-28T14:53:53Z) - ReasonGrounder: LVLM-Guided Hierarchical Feature Splatting for Open-Vocabulary 3D Visual Grounding and Reasoning [68.4209681278336]
Open-vocabulary 3D visual grounding and reasoning aim to localize objects in a scene based on implicit language descriptions.
Current methods struggle because they rely heavily on fine-tuning with 3D annotations and mask proposals.
We propose ReasonGrounder, an LVLM-guided framework that uses hierarchical 3D feature Gaussian fields for adaptive grouping.
arXiv Detail & Related papers (2025-03-30T03:40:35Z) - Talk2PC: Enhancing 3D Visual Grounding through LiDAR and Radar Point Clouds Fusion for Autonomous Driving [25.28104119280405]
We propose TPCNet, the first outdoor 3D visual grounding model upon the paradigm of prompt-guided point cloud sensor combination.
To balance the features of these two sensors required by the prompt, we have designed a multi-fusion paradigm called Two-Stage Heterogeneous Modal Adaptive Fusion.
Our experiments have demonstrated that TPCNet achieves the state-of-the-art performance on both the Talk2Radar and Talk2Car datasets.
arXiv Detail & Related papers (2025-03-11T11:48:27Z) - Hierarchical Cross-Modal Alignment for Open-Vocabulary 3D Object Detection [45.68105299990119]
Open-vocabulary 3D object detection (OV-3DOD) aims at localizing and classifying novel objects beyond closed sets.<n>We propose a hierarchical framework, named HCMA, to simultaneously learn local object and global scene information for OV-3DOD.
arXiv Detail & Related papers (2025-03-10T17:55:22Z) - AugRefer: Advancing 3D Visual Grounding via Cross-Modal Augmentation and Spatial Relation-based Referring [49.78120051062641]
3D visual grounding aims to correlate a natural language description with the target object within a 3D scene.
Existing approaches commonly encounter a shortage of text3D pairs available for training.
We propose AugRefer, a novel approach for advancing 3D visual grounding.
arXiv Detail & Related papers (2025-01-16T09:57:40Z) - Articulate3D: Holistic Understanding of 3D Scenes as Universal Scene Description [56.69740649781989]
3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI.<n>We introduce Articulate3D, an expertly curated 3D dataset featuring high-quality manual annotations on 280 indoor scenes.<n>We also present USDNet, a novel unified framework capable of simultaneously predicting part segmentation along with a full specification of motion attributes for articulated objects.
arXiv Detail & Related papers (2024-12-02T11:33:55Z) - Neural Attention Field: Emerging Point Relevance in 3D Scenes for One-Shot Dexterous Grasping [34.98831146003579]
One-shot transfer of dexterous grasps to novel scenes with object and context variations has been a challenging problem.
We propose the textitneural attention field for representing semantic-aware dense feature fields in the 3D space.
arXiv Detail & Related papers (2024-10-30T14:06:51Z) - Bi-directional Contextual Attention for 3D Dense Captioning [38.022425401910894]
3D dense captioning is a task involving the localization of objects and the generation of descriptions for each object in a 3D scene.
Recent approaches have attempted to incorporate contextual information by modeling relationships with object pairs or aggregating the nearest neighbor features of an object.
We introduce BiCA, a transformer encoder-decoder pipeline that engages in 3D dense captioning for each object with Bi-directional Contextual Attention.
arXiv Detail & Related papers (2024-08-13T06:25:54Z) - Volumetric Environment Representation for Vision-Language Navigation [66.04379819772764]
Vision-language navigation (VLN) requires an agent to navigate through a 3D environment based on visual observations and natural language instructions.
We introduce a Volumetric Environment Representation (VER), which voxelizes the physical world into structured 3D cells.
VER predicts 3D occupancy, 3D room layout, and 3D bounding boxes jointly.
arXiv Detail & Related papers (2024-03-21T06:14:46Z) - Uni3DETR: Unified 3D Detection Transformer [75.35012428550135]
We propose a unified 3D detector that addresses indoor and outdoor detection within the same framework.
Specifically, we employ the detection transformer with point-voxel interaction for object prediction.
We then propose the mixture of query points, which sufficiently exploits global information for dense small-range indoor scenes and local information for large-range sparse outdoor ones.
arXiv Detail & Related papers (2023-10-09T13:20:20Z) - Dense Object Grounding in 3D Scenes [28.05720194887322]
Localizing objects in 3D scenes according to the semantics of a given natural language is a fundamental yet important task in the field of multimedia understanding.
We introduce 3D Dense Object Grounding (3D DOG), to jointly localize multiple objects described in a more complicated paragraph rather than a single sentence.
Our proposed 3DOGSFormer outperforms state-of-the-art 3D single-object grounding methods and their dense-object variants by significant margins.
arXiv Detail & Related papers (2023-09-05T13:27:19Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset.
This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories.
We propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for 3D scenes.
arXiv Detail & Related papers (2023-08-01T07:50:14Z) - 3DRP-Net: 3D Relative Position-aware Network for 3D Visual Grounding [58.924180772480504]
3D visual grounding aims to localize the target object in a 3D point cloud by a free-form language description.
We propose a relation-aware one-stage framework, named 3D Relative Position-aware Network (3-Net)
arXiv Detail & Related papers (2023-07-25T09:33:25Z) - Language-Guided 3D Object Detection in Point Cloud for Autonomous
Driving [91.91552963872596]
We propose a new multi-modal visual grounding task, termed LiDAR Grounding.
It jointly learns the LiDAR-based object detector with the language features and predicts the targeted region directly from the detector.
Our work offers a deeper insight into the LiDAR-based grounding task and we expect it presents a promising direction for the autonomous driving community.
arXiv Detail & Related papers (2023-05-25T06:22:10Z) - Generating Visual Spatial Description via Holistic 3D Scene
Understanding [88.99773815159345]
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images.
With an external 3D scene extractor, we obtain the 3D objects and scene features for input images.
We construct a target object-centered 3D spatial scene graph (Go3D-S2G), such that we model the spatial semantics of target objects within the holistic 3D scenes.
arXiv Detail & Related papers (2023-05-19T15:53:56Z) - SWFormer: Sparse Window Transformer for 3D Object Detection in Point
Clouds [44.635939022626744]
3D object detection in point clouds is a core component for modern robotics and autonomous driving systems.
Key challenge in 3D object detection comes from the inherent sparse nature of point occupancy within the 3D scene.
We propose Sparse Window Transformer (SWFormer), a scalable and accurate model for 3D object detection.
arXiv Detail & Related papers (2022-10-13T21:37:53Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.