論文の概要: Robust and Efficient Fine-tuning of LLMs with Bayesian Reparameterization of Low-Rank Adaptation
- arxiv url: http://arxiv.org/abs/2411.04358v2
- Date: Fri, 08 Nov 2024 07:31:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 11:36:13.664493
- Title: Robust and Efficient Fine-tuning of LLMs with Bayesian Reparameterization of Low-Rank Adaptation
- Title(参考訳): 低ランク適応のベイズ再パラメータ化によるLDMのロバストかつ効率的な微調整
- Authors: Ayan Sengupta, Vaibhav Seth, Arinjay Pathak, Natraj Raman, Sriram Gopalakrishnan, Tanmoy Chakraborty,
- Abstract要約: 大規模言語モデル(LLM)は、その巨大なサイズのため、リソース集約性が高いため、微調整が可能である。
本稿では,評価器の分散を低減し,最終的なモデル出力の安定性を高めるために,低ランク微調整における効果的なパラメータ化の重要性を強調した。
提案手法はモンテカルロ推定法を用いて,低次パラメータの非バイアス後推定を低次分散で学習する手法である。
- 参考スコア(独自算出の注目度): 17.84857303452691
- License:
- Abstract: Large Language Models (LLMs) are highly resource-intensive to fine-tune due to their enormous size. While low-rank adaptation is a prominent parameter-efficient fine-tuning approach, it suffers from sensitivity to hyperparameter choices, leading to instability in model performance on fine-tuning downstream tasks. This paper highlights the importance of effective parameterization in low-rank fine-tuning to reduce estimator variance and enhance the stability of final model outputs. We propose MonteCLoRA, an efficient fine-tuning technique, employing Monte Carlo estimation to learn an unbiased posterior estimation of low-rank parameters with low expected variance, which stabilizes fine-tuned LLMs with only O(1) additional parameters. MonteCLoRA shows significant improvements in accuracy and robustness, achieving up to 3.8% higher accuracy and 8.6% greater robustness than existing efficient fine-tuning methods on natural language understanding tasks with pre-trained RoBERTa-base. Furthermore, in generative tasks with pre-trained LLaMA-1-7B, MonteCLoRA demonstrates robust zero-shot performance with 50% lower variance than the contemporary efficient fine-tuning methods. The theoretical and empirical results presented in the paper underscore how parameterization and hyperpriors balance exploration-exploitation in the low-rank parametric space, therefore leading to more optimal and robust parameter estimation during efficient fine-tuning.
- Abstract(参考訳): 大規模言語モデル(LLM)は、その巨大なサイズのため、リソース集約性が高いため、微調整が可能である。
低ランク適応はパラメータ効率の優れた微調整手法であるが、過パラメータ選択に対する感度に悩まされ、微調整下流タスクのモデル性能が不安定になる。
本稿では,評価器の分散を低減し,最終的なモデル出力の安定性を高めるために,低ランク微調整における効果的なパラメータ化の重要性を強調した。
我々はモンテカルロ推定法を用いて,低期待分散の低ランクパラメータの非バイアス後推定を学習し,O(1)付加パラメータのみで微調整LDMを安定化させる,効率的な微調整手法であるモンテクロラを提案する。
MonteCLoRAは精度と堅牢性を大幅に向上し、RoBERTaベースでトレーニング済みの自然言語理解タスクにおいて、既存の効率的な微調整方法よりも最大3.8%高い精度と8.6%高い堅牢性を実現している。
さらに、LLaMA-1-7Bを事前訓練した生成タスクでは、モンテクロラは、現在の効率的な微調整法よりも50%低いばらつきで頑健なゼロショット性能を示す。
論文で示された理論的および実証的な結果は、低ランクパラメトリック空間におけるパラメータ化とハイパープライアーズによる探索-探索のバランスが、より効率的な微調整中により最適でロバストなパラメータ推定に繋がることを示している。
関連論文リスト
- LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、下流タスクのための大規模な事前学習モデルに効果的に適応する、PEFT (Efficient Fine Tuning) 手法として人気がある。
モデル更新に低階テンソルパラメトリゼーションを用いる新しい手法を提案する。
提案手法は,大規模言語モデルの微調整に有効であり,比較性能を維持しつつ,パラメータ数の大幅な削減を実現している。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
微調整された事前訓練されたモデルは、リソース集約的で厳しい。
広く採用されているPEFT技術であるLoRA(Lo-Rank Adaptation)は、事前訓練されたモデルの重量を凍結する。
NEATは、トレーニング済みの重みを入力として取り込んだ軽量ニューラルネットワークを導入し、近似累積重み更新のための非線形変換を学習する。
論文 参考訳(メタデータ) (2024-10-02T17:29:23Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
本研究では,事前学習した拡散モデルにおけるパラメータの重要性について検討する。
本稿では,これらの非効率パラメータをフル活用するための新しいモデル微調整法を提案する。
本手法は,下流アプリケーションにおける事前学習モデルの生成能力を向上する。
論文 参考訳(メタデータ) (2024-09-10T16:44:47Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
本稿では,先行研究における重要な仮定を考察し,パラメータ化の新たな視点を提案する。
私たちの経験的調査には、3つの組み合わせでトレーニングされた数万のモデルが含まれています。
最高の学習率のスケーリング基準は、以前の作業の仮定から除外されることがよくあります。
論文 参考訳(メタデータ) (2024-07-08T12:32:51Z) - Hyperparameter Optimization for Large Language Model Instruction-Tuning [6.743825167463901]
トレーニング済みLLMをブラックボックスとして微調整と検証を行うパイプライン全体について検討する。
本研究では,提案アルゴリズムを用いて高次パラメータの空間を効率的に探索し,チューニングモデルの性能向上と人為的アライメントを実現する。
論文 参考訳(メタデータ) (2023-12-01T22:03:12Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
下流タスクで訓練済みの大規模言語モデルを微調整することは、NLPにおいて重要なパラダイムとなっている。
重み行列のパラメータ予算をその重要度に応じて適応的に割り当てるAdaLoRAを提案する。
我々は,AdaLoRAの有効性を検証するために,自然言語処理,質問応答,自然言語生成に関する事前学習モデルを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-03-18T22:36:25Z) - On the Effectiveness of Parameter-Efficient Fine-Tuning [79.6302606855302]
現在、多くの研究が、パラメータのごく一部のみを微調整し、異なるタスク間で共有されるパラメータのほとんどを保持することを提案している。
これらの手法は, いずれも細粒度モデルであり, 新たな理論的解析を行う。
我々の理論に根ざした空間性の有効性にもかかわらず、調整可能なパラメータをどう選ぶかという問題はまだ未解決のままである。
論文 参考訳(メタデータ) (2022-11-28T17:41:48Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
既存の微調整法は、事前訓練されたモデルの全てのパラメータ(フル微調整)をチューニングするか、最後の線形層(線形プローブ)のみをチューニングする。
そこで本研究では,SSFと呼ばれるパラメータ効率の高いファインタニング手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T08:14:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。