Neuro-Symbolic AI: Explainability, Challenges, and Future Trends
- URL: http://arxiv.org/abs/2411.04383v1
- Date: Thu, 07 Nov 2024 02:54:35 GMT
- Title: Neuro-Symbolic AI: Explainability, Challenges, and Future Trends
- Authors: Xin Zhang, Victor S. Sheng,
- Abstract summary: This article proposes a classification for explainability by considering both model design and behavior of 191 studies from 2013.
We classify them into five categories by considering whether the form of bridging the representation differences is readable.
We put forward suggestions for future research in three aspects: unified representations, enhancing model explainability, ethical considerations, and social impact.
- Score: 26.656105779121308
- License:
- Abstract: Explainability is an essential reason limiting the application of neural networks in many vital fields. Although neuro-symbolic AI hopes to enhance the overall explainability by leveraging the transparency of symbolic learning, the results are less evident than imagined. This article proposes a classification for explainability by considering both model design and behavior of 191 studies from 2013, focusing on neuro-symbolic AI, hoping to inspire scholars who want to understand the explainability of neuro-symbolic AI. Precisely, we classify them into five categories by considering whether the form of bridging the representation differences is readable as their design factor, if there are representation differences between neural networks and symbolic logic learning, and whether a model decision or prediction process is understandable as their behavior factor: implicit intermediate representations and implicit prediction, partially explicit intermediate representations and partially explicit prediction, explicit intermediate representations or explicit prediction, explicit intermediate representation and explicit prediction, unified representation and explicit prediction. We also analyzed the research trends and three significant challenges: unified representations, explainability and transparency, and sufficient cooperation from neural networks and symbolic learning. Finally, we put forward suggestions for future research in three aspects: unified representations, enhancing model explainability, ethical considerations, and social impact.
Related papers
- The Cognitive Revolution in Interpretability: From Explaining Behavior to Interpreting Representations and Algorithms [3.3653074379567096]
mechanistic interpretability (MI) has emerged as a distinct research area studying the features and implicit algorithms learned by foundation models such as large language models.
We argue that current methods are ripe to facilitate a transition in deep learning interpretation echoing the "cognitive revolution" in 20th-century psychology.
We propose a taxonomy mirroring key parallels in computational neuroscience to describe two broad categories of MI research.
arXiv Detail & Related papers (2024-08-11T20:50:16Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Interpretability is in the Mind of the Beholder: A Causal Framework for
Human-interpretable Representation Learning [22.201878275784246]
Focus in Explainable AI is shifting from explanations defined in terms of low-level elements, such as input features, to explanations encoded in terms of interpretable concepts learned from data.
How to reliably acquire such concepts is, however, still fundamentally unclear.
We propose a mathematical framework for acquiring interpretable representations suitable for both post-hoc explainers and concept-based neural networks.
arXiv Detail & Related papers (2023-09-14T14:26:20Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
We propose an explainable geometric deep network dubbed NeuroExplainer.
NeuroExplainer is used to uncover altered infant cortical development patterns associated with preterm birth.
arXiv Detail & Related papers (2023-01-01T12:48:12Z) - Mapping Knowledge Representations to Concepts: A Review and New
Perspectives [0.6875312133832078]
This review focuses on research that aims to associate internal representations with human understandable concepts.
We find this taxonomy and theories of causality, useful for understanding what can be expected, and not expected, from neural network explanations.
The analysis additionally uncovers an ambiguity in the reviewed literature related to the goal of model explainability.
arXiv Detail & Related papers (2022-12-31T12:56:12Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - Global Concept-Based Interpretability for Graph Neural Networks via
Neuron Analysis [0.0]
Graph neural networks (GNNs) are highly effective on a variety of graph-related tasks.
They lack interpretability and transparency.
Current explainability approaches are typically local and treat GNNs as black-boxes.
We propose a novel approach for producing global explanations for GNNs using neuron-level concepts.
arXiv Detail & Related papers (2022-08-22T21:30:55Z) - A Peek Into the Reasoning of Neural Networks: Interpreting with
Structural Visual Concepts [38.215184251799194]
We propose a framework (VRX) to interpret classification NNs with intuitive structural visual concepts.
By means of knowledge distillation, we show VRX can take a step towards mimicking the reasoning process of NNs.
arXiv Detail & Related papers (2021-05-01T15:47:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.