Emergent Symbolic Mechanisms Support Abstract Reasoning in Large Language Models
- URL: http://arxiv.org/abs/2502.20332v1
- Date: Thu, 27 Feb 2025 18:02:15 GMT
- Title: Emergent Symbolic Mechanisms Support Abstract Reasoning in Large Language Models
- Authors: Yukang Yang, Declan Campbell, Kaixuan Huang, Mengdi Wang, Jonathan Cohen, Taylor Webb,
- Abstract summary: We study the internal mechanisms that support abstract rule induction in an open-source language model.<n>We identify an emergent symbolic architecture that implements abstract reasoning via a series of three computations.
- Score: 35.113784501552686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many recent studies have found evidence for emergent reasoning capabilities in large language models, but debate persists concerning the robustness of these capabilities, and the extent to which they depend on structured reasoning mechanisms. To shed light on these issues, we perform a comprehensive study of the internal mechanisms that support abstract rule induction in an open-source language model (Llama3-70B). We identify an emergent symbolic architecture that implements abstract reasoning via a series of three computations. In early layers, symbol abstraction heads convert input tokens to abstract variables based on the relations between those tokens. In intermediate layers, symbolic induction heads perform sequence induction over these abstract variables. Finally, in later layers, retrieval heads predict the next token by retrieving the value associated with the predicted abstract variable. These results point toward a resolution of the longstanding debate between symbolic and neural network approaches, suggesting that emergent reasoning in neural networks depends on the emergence of symbolic mechanisms.
Related papers
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.
We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.
We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - Neuro-Symbolic AI: Explainability, Challenges, and Future Trends [26.656105779121308]
This article proposes a classification for explainability by considering both model design and behavior of 191 studies from 2013.
We classify them into five categories by considering whether the form of bridging the representation differences is readable.
We put forward suggestions for future research in three aspects: unified representations, enhancing model explainability, ethical considerations, and social impact.
arXiv Detail & Related papers (2024-11-07T02:54:35Z) - VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
We present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations.
We show that our approach offers better sample complexity, stronger out-of-distribution generalization, and improved interpretability.
arXiv Detail & Related papers (2024-10-30T16:11:05Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - The Relational Bottleneck as an Inductive Bias for Efficient Abstraction [3.19883356005403]
We show that neural networks are constrained via their architecture to focus on relations between perceptual inputs, rather than the attributes of individual inputs.
We review a family of models that employ this approach to induce abstractions in a data-efficient manner.
arXiv Detail & Related papers (2023-09-12T22:44:14Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Learning Differentiable Logic Programs for Abstract Visual Reasoning [18.82429807065658]
Differentiable forward reasoning has been developed to integrate reasoning with gradient-based machine learning paradigms.
NEUMANN is a graph-based differentiable forward reasoner, passing messages in a memory-efficient manner and handling structured programs with functors.
We demonstrate that NEUMANN solves visual reasoning tasks efficiently, outperforming neural, symbolic, and neuro-symbolic baselines.
arXiv Detail & Related papers (2023-07-03T11:02:40Z) - Abstractors and relational cross-attention: An inductive bias for explicit relational reasoning in Transformers [4.562331048595688]
An extension of Transformers is proposed that enables explicit relational reasoning through a novel module called the Abstractor.
At the core of the Abstractor is a variant of attention called relational cross-attention.
The approach is motivated by an architectural inductive bias for relational learning that disentangles relational information from object-level features.
arXiv Detail & Related papers (2023-04-01T01:49:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.