論文の概要: Enhancing Bronchoscopy Depth Estimation through Synthetic-to-Real Domain Adaptation
- arxiv url: http://arxiv.org/abs/2411.04404v1
- Date: Thu, 07 Nov 2024 03:48:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:37:41.689165
- Title: Enhancing Bronchoscopy Depth Estimation through Synthetic-to-Real Domain Adaptation
- Title(参考訳): 合成領域適応による気管支鏡深度推定の強化
- Authors: Qingyao Tian, Huai Liao, Xinyan Huang, Lujie Li, Hongbin Liu,
- Abstract要約: 本研究では, 深度ラベル付き合成データを用いた移動学習フレームワークを提案し, 実気管支鏡データの正確な深度推定にドメイン知識を適用した。
本ネットワークは,合成データのみによるトレーニングに比べて,実際の映像の深度予測の改善を実証し,本手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 2.795503750654676
- License:
- Abstract: Monocular depth estimation has shown promise in general imaging tasks, aiding in localization and 3D reconstruction. While effective in various domains, its application to bronchoscopic images is hindered by the lack of labeled data, challenging the use of supervised learning methods. In this work, we propose a transfer learning framework that leverages synthetic data with depth labels for training and adapts domain knowledge for accurate depth estimation in real bronchoscope data. Our network demonstrates improved depth prediction on real footage using domain adaptation compared to training solely on synthetic data, validating our approach.
- Abstract(参考訳): 単眼深度推定は、局所化と3次元再構成を補助する一般的な画像タスクにおいて有望であることを示す。
様々な領域で有効であるが、その気管支鏡像への応用はラベル付きデータの欠如によって妨げられ、教師あり学習法に挑戦する。
本研究では, 深度ラベル付き合成データをトレーニングに活用し, 正確な深度推定にドメイン知識を適用した移動学習フレームワークを提案する。
本ネットワークは,合成データのみによるトレーニングに比べて,実際の映像の深度予測の改善を実証し,本手法の有効性を検証した。
関連論文リスト
- Structure-preserving Image Translation for Depth Estimation in Colonoscopy Video [1.0485739694839669]
本稿では,構造保存型合成現実画像(sim2real)のパイプラインを提案する。
これにより、教師付き深度推定のために、大量のリアルな合成画像を生成することができる。
また,画像翻訳のプロセスを改善するために,臨床大腸内視鏡からの手書き配列のデータセットも提案する。
論文 参考訳(メタデータ) (2024-08-19T17:02:16Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Domain-Adaptive Full-Face Gaze Estimation via Novel-View-Synthesis and Feature Disentanglement [12.857137513211866]
本稿では、教師なしドメイン適応のためのトレーニングデータ合成と視線推定モデルからなる効果的なモデルトレーニングパイプラインを提案する。
提案したデータ合成は、単一画像の3D再構成を利用して、3次元の顔形状データセットを必要とせずに、ソース領域から頭部ポーズの範囲を広げる。
本稿では、視線関連特徴を分離し、背景アグリゲーション整合性損失を導入し、合成音源領域の特性を生かしたディエンタングリングオートエンコーダネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-25T15:15:03Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - 3D-PL: Domain Adaptive Depth Estimation with 3D-aware Pseudo-Labeling [37.315964084413174]
我々は,実際のデータから信頼された疑似基底真理を生成して,直接の監視を行うドメイン適応フレームワークを開発する。
具体的には,(1)画像が同一内容の異なるスタイルのときの深度予測の一貫性を計測し,(2)3次元空間における深度値の完備化を学習するポイントクラウドコンプリートネットワークを介して,擬似ラベルを認識させることにより,擬似ラベルの2つのメカニズムを提案する。
論文 参考訳(メタデータ) (2022-09-19T17:54:17Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
そこで本研究では,深度推定のためのドメイン適応手法を提案する。
提案する2段階構造は,まず,ラベル付き合成画像を用いた深度推定ネットワークを教師付きで訓練する。
実験の結果,提案手法は実画像上でのネットワーク性能をかなりの差で向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-24T08:11:34Z) - Occlusion-aware Unsupervised Learning of Depth from 4-D Light Fields [50.435129905215284]
4次元光場処理と解析のための教師なし学習に基づく深度推定法を提案する。
光場データの特異な幾何学構造に関する基礎知識に基づいて,光場ビューのサブセット間の角度コヒーレンスを探索し,深度マップを推定する。
提案手法は,従来の手法と同等の精度で計算コストを低減した深度マップを作成できる。
論文 参考訳(メタデータ) (2021-06-06T06:19:50Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
ドメイン認識コントラスト学習(Domain-Agnostic Contrastive Learning、DACL)は、2段階の非監視ドメイン適応フレームワークである。
提案手法は,従来の最新手法に比べ,単眼深度推定作業における性能向上を実現した。
論文 参考訳(メタデータ) (2021-03-10T07:06:03Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。