論文の概要: Comparing Fairness of Generative Mobility Models
- arxiv url: http://arxiv.org/abs/2411.04453v1
- Date: Thu, 07 Nov 2024 06:01:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:38:01.823836
- Title: Comparing Fairness of Generative Mobility Models
- Title(参考訳): 生成モビリティモデルの比較
- Authors: Daniel Wang, Jack McFarland, Afra Mashhadi, Ekin Ugurel,
- Abstract要約: 本研究は、生成モビリティモデルの公平性を検証し、地理的領域にわたるモデルパフォーマンスにおいて、しばしば見落とされがちなエクイティの次元に対処する。
クラウドフローデータに基づいて構築された予測モデルは、都市構造や移動パターンを理解するのに有効である。
生成したトレースの有効性と公平性を測定することによって、公正性を評価するための新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 3.699135947901772
- License:
- Abstract: This work examines the fairness of generative mobility models, addressing the often overlooked dimension of equity in model performance across geographic regions. Predictive models built on crowd flow data are instrumental in understanding urban structures and movement patterns; however, they risk embedding biases, particularly in spatiotemporal contexts where model performance may reflect and reinforce existing inequities tied to geographic distribution. We propose a novel framework for assessing fairness by measuring the utility and equity of generated traces. Utility is assessed via the Common Part of Commuters (CPC), a similarity metric comparing generated and real mobility flows, while fairness is evaluated using demographic parity. By reformulating demographic parity to reflect the difference in CPC distribution between two groups, our analysis reveals disparities in how various models encode biases present in the underlying data. We utilized four models (Gravity, Radiation, Deep Gravity, and Non-linear Gravity) and our results indicate that traditional gravity and radiation models produce fairer outcomes, although Deep Gravity achieves higher CPC. This disparity underscores a trade-off between model accuracy and equity, with the feature-rich Deep Gravity model amplifying pre-existing biases in community representations. Our findings emphasize the importance of integrating fairness metrics in mobility modeling to avoid perpetuating inequities.
- Abstract(参考訳): 本研究は、生成モビリティモデルの公平性を検証し、地理的領域にわたるモデルパフォーマンスにおいて、しばしば見落とされがちなエクイティの次元に対処する。
クラウドフローデータ上に構築された予測モデルは都市構造や移動パターンを理解する上で有効であるが、特にモデル性能が地域分布に関連する既存の不等式を反映し補強する時空間的文脈において、埋没バイアスのリスクを負う。
生成したトレースの有効性と公平性を測定することによって、公正性を評価するための新しいフレームワークを提案する。
公共交通機関の共通部分(Common Part of Commuters, CPC)は、発生したモビリティフローと実際のモビリティフローを比較した類似度尺度である。
この2つのグループ間のCPC分布の差異を反映して人口分布を再構成することにより、基礎となるデータに存在するバイアスを様々なモデルでエンコードする方法の相違を明らかにする。
実験では, 重力, 放射, 深部重力, 非線形重力の4つのモデルを用いて, 従来の重力モデルと放射モデルにより, より公平な結果が得られることを示した。
この格差は、モデル精度とエクイティのトレードオフを浮き彫りにしており、機能豊富なDeep Gravityモデルは、コミュニティ表現の既存のバイアスを増幅している。
本研究は,不等式を避けるため,モビリティモデリングにおける公平度指標の統合の重要性を強調した。
関連論文リスト
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Bias Begets Bias: The Impact of Biased Embeddings on Diffusion Models [0.0]
テキスト・トゥ・イメージ(TTI)システムは、社会的偏見に対する精査が増加している。
組込み空間をTTIモデルのバイアス源として検討する。
CLIPのような偏りのあるマルチモーダル埋め込みは、表現バランスの取れたTTIモデルに対して低いアライメントスコアをもたらす。
論文 参考訳(メタデータ) (2024-09-15T01:09:55Z) - Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications [0.0]
本研究では,合成データを用いたモデル適応と一般化について検討する。
我々は、データ類似性を評価するために、Kullback-Leiblerの発散、Jensen-Shannon距離、Mahalanobis距離などの量的尺度を用いる。
本研究は,マハラノビス距離などの統計指標を用いて,モデル予測が低誤差の「補間体制」内にあるか,あるいは高誤差の「補間体制」が分布変化とモデル不確実性を評価するための補完的手法を提供することを示唆している。
論文 参考訳(メタデータ) (2024-05-03T10:05:31Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - Toward Fair Facial Expression Recognition with Improved Distribution
Alignment [19.442685015494316]
本稿では,表情認識(FER)モデルにおけるバイアスを軽減する新しい手法を提案する。
本手法は、FERモデルによる埋め込みにおいて、性別、年齢、人種などの機密属性情報を低減することを目的としている。
ferモデルにおいて、魅力の概念を重要な感度属性として分析し、FERモデルがより魅力的な顔に対するバイアスを実際に示できることを実証する。
論文 参考訳(メタデータ) (2023-06-11T14:59:20Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
データや学習アルゴリズムを変更することなく、機械学習モデルの公平性を向上する方法を示す。
異なる集団間の傾向のばらつきと、学習モデルと少数民族間の連続的な傾向は、データドリフトと類似している。
このドリフトを解決するための2つの戦略(モデル分割とリウィーディング)を探索し、基礎となるデータに対するモデル全体の適合性を改善することを目的としている。
論文 参考訳(メタデータ) (2023-03-30T17:30:42Z) - The Unbearable Weight of Massive Privilege: Revisiting Bias-Variance
Trade-Offs in the Context of Fair Prediction [7.975779552420981]
単一モデルによるトレードオフを改善することを目的とした条件付きid(ciid)モデルを提案する。
我々は、CompASおよびフォークテーブルデータセット上で、我々の設定を実証的にテストする。
分析の結果,条件付きモデルが好まれる原則的手順や具体的な実世界のユースケースが存在する可能性が示唆された。
論文 参考訳(メタデータ) (2023-02-17T05:34:35Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Harnessing Perceptual Adversarial Patches for Crowd Counting [92.79051296850405]
群衆のカウントは、物理的な世界の敵の例に弱い。
本稿では,モデル間での知覚的特徴の共有を学習するためのPAP(Perceptual Adrial Patch)生成フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:51:39Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
分布外性能は,広範囲なモデルと分布シフトに対する分布内性能と強く相関していることを示す。
具体的には,CIFAR-10 と ImageNet の変種に対する分布内分布と分布外分布性能の強い相関関係を示す。
また,CIFAR-10-Cと組織分類データセットCamelyon17-WILDSの合成分布の変化など,相関が弱いケースについても検討した。
論文 参考訳(メタデータ) (2021-07-09T19:48:23Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
本稿では,外部監査役の役割とモデル説明可能性を強調するフェアネスの新たな定義を提案する。
逆代理モデルのSHAP値から構築した正規化を用いてモデルバイアスを緩和するフレームワークを開発する。
合成データセット、UCIアダルト(国勢調査)データセット、実世界の信用評価データセットである。
論文 参考訳(メタデータ) (2020-03-11T14:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。