論文の概要: Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications
- arxiv url: http://arxiv.org/abs/2405.01978v1
- Date: Fri, 3 May 2024 10:05:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 13:15:51.332212
- Title: Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications
- Title(参考訳): 機械学習応用におけるモデルロバスト性向上のための分布シフトと不確かさの定量化
- Authors: Vegard Flovik,
- Abstract要約: 本研究では,合成データを用いたモデル適応と一般化について検討する。
我々は、データ類似性を評価するために、Kullback-Leiblerの発散、Jensen-Shannon距離、Mahalanobis距離などの量的尺度を用いる。
本研究は,マハラノビス距離などの統計指標を用いて,モデル予測が低誤差の「補間体制」内にあるか,あるいは高誤差の「補間体制」が分布変化とモデル不確実性を評価するための補完的手法を提供することを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distribution shifts, where statistical properties differ between training and test datasets, present a significant challenge in real-world machine learning applications where they directly impact model generalization and robustness. In this study, we explore model adaptation and generalization by utilizing synthetic data to systematically address distributional disparities. Our investigation aims to identify the prerequisites for successful model adaptation across diverse data distributions, while quantifying the associated uncertainties. Specifically, we generate synthetic data using the Van der Waals equation for gases and employ quantitative measures such as Kullback-Leibler divergence, Jensen-Shannon distance, and Mahalanobis distance to assess data similarity. These metrics en able us to evaluate both model accuracy and quantify the associated uncertainty in predictions arising from data distribution shifts. Our findings suggest that utilizing statistical measures, such as the Mahalanobis distance, to determine whether model predictions fall within the low-error "interpolation regime" or the high-error "extrapolation regime" provides a complementary method for assessing distribution shift and model uncertainty. These insights hold significant value for enhancing model robustness and generalization, essential for the successful deployment of machine learning applications in real-world scenarios.
- Abstract(参考訳): トレーニングとテストデータセットの統計特性が異なる分布シフトは、モデル一般化と堅牢性に直接影響する実世界の機械学習アプリケーションにおいて、大きな課題となる。
本研究では,合成データを用いたモデル適応と一般化について検討し,分布の相違を系統的に解消する。
本研究の目的は,関係する不確実性を定量化しつつ,多様なデータ分布にまたがるモデル適応を実現するための前提条件を明らかにすることである。
具体的には,ファンデルワールス方程式を用いてガスの合成データを生成し,Kulback-Leibler分散,Jensen-Shannon距離,Mahalanobis距離などの測定値を用いてデータ類似性を評価する。
これらの指標により,データ分散シフトによる予測において,モデル精度と関連する不確実性の両方を評価することができる。
本研究は,マハラノビス距離などの統計指標を用いて,モデル予測が低誤差の「補間体制」内にあるか,高誤差の「補間体制」が分布変化とモデル不確実性を評価するための相補的手法を提供することを示唆している。
これらの洞察は、実際のシナリオにおける機械学習アプリケーションのデプロイの成功に不可欠である、モデルの堅牢性と一般化を強化する上で重要な価値を持っている。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
本研究では,条件付き深部生成モデルの推定のための可能性に基づくアプローチの大規模サンプル特性について検討する。
その結果,条件分布を推定するための最大極大推定器の収束率を導いた。
論文 参考訳(メタデータ) (2024-10-02T20:46:21Z) - Zero-Shot Uncertainty Quantification using Diffusion Probabilistic Models [7.136205674624813]
拡散モデルを用いて異なる回帰問題の解法におけるアンサンブル法の有効性を評価する。
本研究では,様々な回帰タスクにおいて,アンサンブル手法がモデル予測精度を一貫して向上することを実証する。
本研究は,拡散アンサンブルの有用性を包括的に把握し,回帰問題解決における拡散モデルを用いた実践者にとって有用な参考となる。
論文 参考訳(メタデータ) (2024-08-08T18:34:52Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - The Lifecycle of a Statistical Model: Model Failure Detection,
Identification, and Refitting [26.351782287953267]
モデル性能が低下し始めた共変量空間(サブポピュレーション)の領域を検出し同定するためのツールと理論を開発した。
実世界の3つのデータセットを用いて実験結果を示す。
我々はこれらの実験結果を補足し、我々の手法が異常なサブ集団の回復に最適であることを示す理論で補足する。
論文 参考訳(メタデータ) (2022-02-08T22:02:31Z) - Causality and Generalizability: Identifiability and Learning Methods [0.0]
この論文は、因果効果の推定、因果構造学習、および分布的に堅牢な予測方法に関する研究領域に寄与する。
本稿では,データ依存平均二乗予測誤差正規化を用いた機器変数設定における線形・非線形因果関係推定器について述べる。
本稿では,介入誘起分布に関する分布ロバスト性に関する一般的な枠組みを提案する。
論文 参考訳(メタデータ) (2021-10-04T13:12:11Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
分布外性能は,広範囲なモデルと分布シフトに対する分布内性能と強く相関していることを示す。
具体的には,CIFAR-10 と ImageNet の変種に対する分布内分布と分布外分布性能の強い相関関係を示す。
また,CIFAR-10-Cと組織分類データセットCamelyon17-WILDSの合成分布の変化など,相関が弱いケースについても検討した。
論文 参考訳(メタデータ) (2021-07-09T19:48:23Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
ドメイン適応と予測不確実性文学を結びつけて、挑戦的な未知分布のモデル精度を予測する。
分類器の予測における信頼度(DoC)の差は,様々な変化に対して,分類器の性能変化を推定することに成功した。
具体的には, 合成分布と自然分布の区別について検討し, その単純さにもかかわらず, DoCは分布差の定量化に優れることを示した。
論文 参考訳(メタデータ) (2021-07-07T15:50:18Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。