論文の概要: CFPNet: Improving Lightweight ToF Depth Completion via Cross-zone Feature Propagation
- arxiv url: http://arxiv.org/abs/2411.04480v1
- Date: Thu, 07 Nov 2024 07:19:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:38:42.653632
- Title: CFPNet: Improving Lightweight ToF Depth Completion via Cross-zone Feature Propagation
- Title(参考訳): CFPNet: クロスゾーン特徴伝搬による軽量ToF深さ補完の改善
- Authors: Laiyan Ding, Hualie Jiang, Rui Xu, Rui Huang,
- Abstract要約: 軽量飛行時間(ToF)深度センサーは低コストのため魅力的だ。
従来の手法では、ゾーン領域から外部ゾーン領域への深度特性を効果的に伝播することができなかった。
本稿では,ゾーン領域から外部領域へのクロスゾーン特徴伝搬を実現するためのCFPNetを提案する。
- 参考スコア(独自算出の注目度): 11.186943327904729
- License:
- Abstract: Depth completion using lightweight time-of-flight (ToF) depth sensors is attractive due to their low cost. However, lightweight ToF sensors usually have a limited field of view (FOV) compared with cameras. Thus, only pixels in the zone area of the image can be associated with depth signals. Previous methods fail to propagate depth features from the zone area to the outside-zone area effectively, thus suffering from degraded depth completion performance outside the zone. To this end, this paper proposes the CFPNet to achieve cross-zone feature propagation from the zone area to the outside-zone area with two novel modules. The first is a direct-attention-based propagation module (DAPM), which enforces direct cross-zone feature acquisition. The second is a large-kernel-based propagation module (LKPM), which realizes cross-zone feature propagation by utilizing convolution layers with kernel sizes up to 31. CFPNet achieves state-of-the-art (SOTA) depth completion performance by combining these two modules properly, as verified by extensive experimental results on the ZJU-L5 dataset. The code will be made public.
- Abstract(参考訳): 軽量飛行時間(ToF)深度センサを用いた深度補正は低コストで実現可能である。
しかし、軽量のToFセンサーは通常、カメラと比較して視野が限られている(FOV)。
これにより、画像のゾーン領域内の画素のみを奥行き信号に関連付けることができる。
従来の手法では、ゾーン領域から外部ゾーン領域への深さ特性を効果的に伝播することができず、ゾーン外の劣化した深さ完了性能に悩まされる。
そこで本稿では, CFPNetを用いて, 2つの新しいモジュールを用いて, ゾーン領域から外部領域へのクロスゾーン特徴伝搬を実現することを提案する。
1つ目は、直接アテンションベースの伝搬モジュール(DAPM)で、直接クロスゾーン機能取得を強制する。
2つ目は、カーネルサイズが最大31の畳み込み層を利用することで、クロスゾーン特徴伝搬を実現する、LKPM(Big-kernel-based propagation module)である。
CFPNetは、ZJU-L5データセットの広範な実験結果によって検証され、これら2つのモジュールを適切に組み合わせることで、最先端(SOTA)深度補完性能を達成する。
コードは公開されます。
関連論文リスト
- SFFNet: A Wavelet-Based Spatial and Frequency Domain Fusion Network for Remote Sensing Segmentation [9.22384870426709]
本稿ではSFFNet(Spatial and Frequency Domain Fusion Network)フレームワークを提案する。
第1段階は空間的手法を用いて特徴を抽出し、十分な空間的詳細と意味情報を持つ特徴を得る。
第2段階は、これらの特徴を空間領域と周波数領域の両方にマッピングする。
SFFNetはmIoUの点で優れた性能を示し、それぞれ84.80%と87.73%に達した。
論文 参考訳(メタデータ) (2024-05-03T10:47:56Z) - Ternary-Type Opacity and Hybrid Odometry for RGB NeRF-SLAM [58.736472371951955]
表面を交差する光線上の点を3つの領域(前・前・後・後)に分類する3成分式不透明度モデルを導入する。
これにより、より正確な深度のレンダリングが可能となり、画像ワープ技術の性能が向上する。
TTとHOの統合アプローチは,合成および実世界のデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-20T18:03:17Z) - OAFuser: Towards Omni-Aperture Fusion for Light Field Semantic Segmentation [48.828453331724965]
我々は,Omni-Aperture Fusion Model (OAFuser) を提案する。
提案したOAFuserは,すべての評価指標から4つのUrbanLFデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-28T14:43:27Z) - Learning an Efficient Multimodal Depth Completion Model [11.740546882538142]
RGB画像ガイドによるスパース深度補完は近年広く注目されているが、まだいくつかの問題に直面している。
提案手法は軽量なアーキテクチャで最先端の手法より優れている。
また、MIPI2022 RGB+TOFディープ・コンプリート・チャレンジでも優勝している。
論文 参考訳(メタデータ) (2022-08-23T07:03:14Z) - Layout-to-Image Translation with Double Pooling Generative Adversarial
Networks [76.83075646527521]
入力レイアウトからフォトリアリスティックでセマンティックに一貫性のある結果を生成するための新しいDouble Pooing GAN(DPGAN)を提案する。
また,角形プールモジュール (SPM) と矩形プールモジュール (RPM) からなる新しい二重プールモジュール (DPM) を提案する。
論文 参考訳(メタデータ) (2021-08-29T19:55:14Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
自律運転やロボティクスなど,多くのアプリケーションを対象とした3次元セマンティックセマンティックセグメンテーションのためのマルチセンサフュージョンについて検討する。
本研究では,知覚認識型マルチセンサフュージョン(PMF)と呼ばれる協調融合方式について検討する。
本稿では,2つのモードから特徴を分離して抽出する2ストリームネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-21T10:47:26Z) - Change Detection in Synthetic Aperture Radar Images Using a Dual-Domain
Network [33.50775914682585]
合成開口レーダ(SAR)画像からの変化検出は、重要かつ困難な作業です。
既存の手法は主に空間領域の特徴抽出に焦点を当てており、周波数領域にはほとんど注意が払われていない。
上記の2つの課題に取り組むためのデュアルドメインネットワークを提案します。
論文 参考訳(メタデータ) (2021-04-14T08:41:48Z) - Dense Attention Fluid Network for Salient Object Detection in Optical
Remote Sensing Images [193.77450545067967]
光リモートセンシング画像(RSI)における有意物体検出のためのエンド・ツー・エンドDense Attention Fluid Network(DAFNet)を提案する。
GCA(Global Context-Aware Attention)モジュールは、長距離の意味的関係を適応的にキャプチャするために提案される。
我々は、2000枚の画像とピクセルワイドなサリエンシアノテーションを含むSODのための新しい、挑戦的な光学RSIデータセットを構築した。
論文 参考訳(メタデータ) (2020-11-26T06:14:10Z) - Deformable spatial propagation network for depth completion [2.5306673456895306]
本稿では,各画素に対して異なる受容場と親和性行列を適応的に生成する変形可能な空間伝搬ネットワーク(DSPN)を提案する。
これにより、ネットワークは伝播のためのより少ないがより関連性の高い情報を得ることができる。
論文 参考訳(メタデータ) (2020-07-08T16:39:50Z) - Learning Light Field Angular Super-Resolution via a Geometry-Aware
Network [101.59693839475783]
そこで本研究では,広いベースラインを持つスパースサンプリング光場を超解き放つことを目的とした,エンド・ツー・エンドの学習ベースアプローチを提案する。
提案手法は,実行時間48$times$を節約しつつ,2番目のベストメソッドのPSNRを平均2dBまで改善する。
論文 参考訳(メタデータ) (2020-02-26T02:36:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。