論文の概要: Ternary-Type Opacity and Hybrid Odometry for RGB NeRF-SLAM
- arxiv url: http://arxiv.org/abs/2312.13332v3
- Date: Mon, 23 Sep 2024 14:48:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 09:05:28.638816
- Title: Ternary-Type Opacity and Hybrid Odometry for RGB NeRF-SLAM
- Title(参考訳): RGB NeRF-SLAM における3値型オパシティとハイブリッドオドメトリー
- Authors: Junru Lin, Asen Nachkov, Songyou Peng, Luc Van Gool, Danda Pani Paudel,
- Abstract要約: 表面を交差する光線上の点を3つの領域(前・前・後・後)に分類する3成分式不透明度モデルを導入する。
これにより、より正確な深度のレンダリングが可能となり、画像ワープ技術の性能が向上する。
TTとHOの統合アプローチは,合成および実世界のデータセット上で最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 58.736472371951955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we address the challenge of deploying Neural Radiance Field (NeRFs) in Simultaneous Localization and Mapping (SLAM) under the condition of lacking depth information, relying solely on RGB inputs. The key to unlocking the full potential of NeRF in such a challenging context lies in the integration of real-world priors. A crucial prior we explore is the binary opacity prior of 3D space with opaque objects. To effectively incorporate this prior into the NeRF framework, we introduce a ternary-type opacity (TT) model instead, which categorizes points on a ray intersecting a surface into three regions: before, on, and behind the surface. This enables a more accurate rendering of depth, subsequently improving the performance of image warping techniques. Therefore, we further propose a novel hybrid odometry (HO) scheme that merges bundle adjustment and warping-based localization. Our integrated approach of TT and HO achieves state-of-the-art performance on synthetic and real-world datasets, in terms of both speed and accuracy. This breakthrough underscores the potential of NeRF-SLAM in navigating complex environments with high fidelity.
- Abstract(参考訳): 本稿では,RGB入力のみに依存する深度情報を欠く条件下でのSLAMにおけるニューラルレーシアンス場(NeRF)の展開の課題に対処する。
このような困難な状況下で、NeRFの可能性を最大限に解き放つ鍵は、現実世界の先進国の統合にある。
私たちが探求する重要な前兆は、不透明なオブジェクトを持つ3次元空間の前のバイナリ不透明さである。
表面を交差する光線上の点を3つの領域(前・前・後・後)に分類する3次型不透明度(TT)モデルを導入する。
これにより、より正確な深度のレンダリングが可能となり、画像ワープ技術の性能が向上する。
そこで本研究では,バンドル調整とワーピングに基づくローカライゼーションを融合した新しいHybrid odometry(HO)方式を提案する。
TTとHOの統合的なアプローチは、スピードと精度の両面から、合成および実世界のデータセットにおける最先端のパフォーマンスを実現する。
この突破口は、高忠実な複雑な環境を航行するNeRF-SLAMの可能性を示している。
関連論文リスト
- RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
微分可能放射場 eg NeRF を利用して、新しいビューレンダリングを生成するとともに、詳細な3次元表面を再構成する。
本研究では,SDFから放射場への射影を一様等間隔のアイコニカル正規化で定式化し,最適化することを考えると,光度重み付け係数を改良する。
提案する textitRaNeuS は,合成データと実データの両方で広く評価されている。
論文 参考訳(メタデータ) (2024-06-14T07:54:25Z) - GlORIE-SLAM: Globally Optimized RGB-only Implicit Encoding Point Cloud SLAM [53.6402869027093]
フレキシブルなニューラルポイントクラウド表現シーンを用いたRGBのみの高密度SLAMシステムを提案する。
また,単分子深度とともに暗黙のポーズと深さを最適化する新しいDSPO層を導入する。
論文 参考訳(メタデータ) (2024-03-28T16:32:06Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
スパース入力によるNeRFの性能向上のための新しい手法を提案する。
まず, サンプル線が, 3次元空間内の特定のボクセルと交差することを保証するために, ボクセルを用いた放射線サンプリング戦略を採用する。
次に、ボクセル内の追加点をランダムにサンプリングし、トランスフォーマーを適用して各線上の他の点の特性を推測し、ボリュームレンダリングに組み込む。
論文 参考訳(メタデータ) (2024-03-25T15:56:17Z) - Hi-Map: Hierarchical Factorized Radiance Field for High-Fidelity
Monocular Dense Mapping [51.739466714312805]
ニューラルラジアンス場(NeRF)に基づく新しいモノクリン高密度マッピング手法であるHi-Mapを導入する。
ハイマップは、RGB入力のみを用いた効率的かつ高忠実なマッピングを実現する能力において例外的である。
論文 参考訳(メタデータ) (2024-01-06T12:32:25Z) - HI-SLAM: Monocular Real-time Dense Mapping with Hybrid Implicit Fields [11.627951040865568]
最近のニューラルマッピングフレームワークは有望な結果を示しているが、RGB-Dやポーズ入力に依存している。
我々のアプローチは、高密度SLAMとニューラル暗黙の場を統合する。
ニューラルネットワークの効率的な構築には,マルチレゾリューショングリッド符号化と符号付き距離関数を用いる。
論文 参考訳(メタデータ) (2023-10-07T12:26:56Z) - DaRF: Boosting Radiance Fields from Sparse Inputs with Monocular Depth
Adaptation [31.655818586634258]
我々は,少数の実世界の画像を用いて,強靭なNeRF再構成を実現する,D"aRF"と呼ばれる新しいフレームワークを提案する。
我々のフレームワークは、視界と視界の両面において、NeRF表現に先立って、MDEネットワークの強力な幾何学を課している。
さらに、パッチワイドスケールシフトフィッティングと幾何蒸留により、単分子深さのあいまいさを克服する。
論文 参考訳(メタデータ) (2023-05-30T16:46:41Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
本研究では,NeRFを高効率メッシュベースニューラル表現に蒸留・焼成する手法を提案する。
提案手法の有効性と優位性を,各種標準データセットの広範な実験を通じて実証する。
論文 参考訳(メタデータ) (2023-04-20T17:59:52Z) - NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM [111.83168930989503]
NICER-SLAMは、カメラポーズと階層的なニューラル暗黙マップ表現を同時に最適化するRGB SLAMシステムである。
近年のRGB-D SLAMシステムと競合する高密度マッピング,追跡,新しいビュー合成において,高い性能を示す。
論文 参考訳(メタデータ) (2023-02-07T17:06:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。