論文の概要: Peri-midFormer: Periodic Pyramid Transformer for Time Series Analysis
- arxiv url: http://arxiv.org/abs/2411.04554v1
- Date: Thu, 07 Nov 2024 09:24:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:37:58.798603
- Title: Peri-midFormer: Periodic Pyramid Transformer for Time Series Analysis
- Title(参考訳): Peri-midFormer:時系列解析のための周期ピラミッド変圧器
- Authors: Qiang Wu, Gechang Yao, Zhixi Feng, Shuyuan Yang,
- Abstract要約: 時系列分析は、天気予報、異常検出、行動認識などの分野に広く応用されている。
従来の手法では1次元時系列を用いて時間変動を直接モデル化する試みがあった。
提案するPeri-midFormerは,5つの主流時系列解析タスクにおいて優れた性能を示す。
- 参考スコア(独自算出の注目度): 18.576473875972717
- License:
- Abstract: Time series analysis finds wide applications in fields such as weather forecasting, anomaly detection, and behavior recognition. Previous methods attempted to model temporal variations directly using 1D time series. However, this has been quite challenging due to the discrete nature of data points in time series and the complexity of periodic variation. In terms of periodicity, taking weather and traffic data as an example, there are multi-periodic variations such as yearly, monthly, weekly, and daily, etc. In order to break through the limitations of the previous methods, we decouple the implied complex periodic variations into inclusion and overlap relationships among different level periodic components based on the observation of the multi-periodicity therein and its inclusion relationships. This explicitly represents the naturally occurring pyramid-like properties in time series, where the top level is the original time series and lower levels consist of periodic components with gradually shorter periods, which we call the periodic pyramid. To further extract complex temporal variations, we introduce self-attention mechanism into the periodic pyramid, capturing complex periodic relationships by computing attention between periodic components based on their inclusion, overlap, and adjacency relationships. Our proposed Peri-midFormer demonstrates outstanding performance in five mainstream time series analysis tasks, including short- and long-term forecasting, imputation, classification, and anomaly detection.
- Abstract(参考訳): 時系列分析は、天気予報、異常検出、行動認識などの分野に広く応用されている。
従来の手法では1次元時系列を用いて時間変動を直接モデル化する試みがあった。
しかし、時系列におけるデータポイントの離散的な性質と周期的変動の複雑さのため、これは非常に困難である。
天気・交通データを例にとると、年次・月次・週次・日次などの多時期変動がある。
従来の手法の限界を打破するため,多周期性とその包摂関係の観測に基づいて,インプリケートされた複素周期変動を,異なるレベル周期成分間の包摂関係と重なり合う関係に分離する。
これは、表層が原時系列であり、下層が徐々に短い周期の周期成分で構成され、周期ピラミッドと呼ばれる時間系列において自然に生じるピラミッドのような性質を明示的に表している。
複雑な時間的変動を抽出するために,我々は周期的ピラミッドに自己注意機構を導入し,その包摂性,重複性,隣接性に基づく周期的成分間の注意を計算することによって複雑な周期的関係を捉える。
提案するPeri-midFormerは,短期・長期予測,計算,分類,異常検出を含む5つの主流時系列解析タスクにおいて,優れた性能を示す。
関連論文リスト
- Causal Discovery-Driven Change Point Detection in Time Series [32.424281626708336]
時系列における変化点検出は、時系列の確率分布が変化する時間を特定する。
実践的な応用では、時系列の特定の構成要素にのみ興味を持ち、その分布の急激な変化を探求する。
論文 参考訳(メタデータ) (2024-07-10T00:54:42Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
本研究では,各サンプルに対して総合的な時間的相互作用特徴学習を実現するためのトランスフォーマーベースのエンコーダを提案する。
実世界の3つのデータセットについて広範な実験を行い、提案したCoFormerが既存の手法を大幅に上回っていることを検証した。
論文 参考訳(メタデータ) (2023-10-17T06:29:09Z) - Kernel-based Joint Independence Tests for Multivariate Stationary and
Non-stationary Time Series [0.6749750044497732]
多変量時系列における共同独立のカーネルベース統計テストを導入する。
提案手法は, 合成例において, 高次依存関係を頑健に発見する方法を示す。
我々の手法はデータの高次相互作用を明らかにするのに役立つ。
論文 参考訳(メタデータ) (2023-05-15T10:38:24Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
時系列解析は、天気予報、異常検出、行動認識などの応用において非常に重要である。
従来の手法では、1D時系列から直接これを達成しようと試みていた。
複雑な経時的変化を、複数の経時的変化と経時的変化に明らかにする。
論文 参考訳(メタデータ) (2022-10-05T12:19:51Z) - STD: A Seasonal-Trend-Dispersion Decomposition of Time Series [0.0]
本稿では,時系列における不均一性を扱うために,季節差分散分解(STD)を提案する。
時系列解析と予測にSTDをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2022-04-21T20:32:20Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Anomaly Transformer: Time Series Anomaly Detection with Association
Discrepancy [68.86835407617778]
Anomaly Transformerは、6つの教師なし時系列異常検出ベンチマークで最先端のパフォーマンスを達成する。
Anomaly Transformerは、6つの教師なし時系列異常検出ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-10-06T10:33:55Z) - Anomaly Attribution of Multivariate Time Series using Counterfactual
Reasoning [7.616400192843963]
我々は,反実的推論に基づく多変量時系列の新しい帰属スキームを開発した。
MDI(Maximally Divergent Interval)アルゴリズムを用いて異常区間を検出する。
論文 参考訳(メタデータ) (2021-09-14T10:15:52Z) - RobustPeriod: Time-Frequency Mining for Robust Multiple Periodicity
Detection [36.254037216142244]
複数の周期性検出のための頑健で汎用的なフレームワークを提案する。
我々のアルゴリズムは、時系列を複数の時間周波数スケールに変換するために、最大重なり合う離散ウェーブレット変換を適用している。
合成および実世界のデータセットの実験により、我々のアルゴリズムは、単周期検出と複数周期検出の両方において、他の一般的なデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-02-21T20:10:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。