Multi-Agents are Social Groups: Investigating Social Influence of Multiple Agents in Human-Agent Interactions
- URL: http://arxiv.org/abs/2411.04578v1
- Date: Thu, 07 Nov 2024 10:00:46 GMT
- Title: Multi-Agents are Social Groups: Investigating Social Influence of Multiple Agents in Human-Agent Interactions
- Authors: Tianqi Song, Yugin Tan, Zicheng Zhu, Yibin Feng, Yi-Chieh Lee,
- Abstract summary: We investigate whether a group of AI agents can create social pressure on users to agree with them.
We found that conversing with multiple agents increased the social pressure felt by participants.
Our study shows the potential advantages of multi-agent systems over single-agent platforms in causing opinion change.
- Score: 7.421573539569854
- License:
- Abstract: Multi-agent systems - systems with multiple independent AI agents working together to achieve a common goal - are becoming increasingly prevalent in daily life. Drawing inspiration from the phenomenon of human group social influence, we investigate whether a group of AI agents can create social pressure on users to agree with them, potentially changing their stance on a topic. We conducted a study in which participants discussed social issues with either a single or multiple AI agents, and where the agents either agreed or disagreed with the user's stance on the topic. We found that conversing with multiple agents (holding conversation content constant) increased the social pressure felt by participants, and caused a greater shift in opinion towards the agents' stances on each topic. Our study shows the potential advantages of multi-agent systems over single-agent platforms in causing opinion change. We discuss design implications for possible multi-agent systems that promote social good, as well as the potential for malicious actors to use these systems to manipulate public opinion.
Related papers
- OASIS: Open Agent Social Interaction Simulations with One Million Agents [147.2538500202457]
We propose a scalable social media simulator based on real-world social media platforms.
OASIS supports large-scale user simulations capable of modeling up to one million users.
We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms.
arXiv Detail & Related papers (2024-11-18T13:57:35Z) - I Want to Break Free! Persuasion and Anti-Social Behavior of LLMs in Multi-Agent Settings with Social Hierarchy [13.68625980741047]
We study interaction patterns of Large Language Model (LLM)-based agents in a context characterized by strict social hierarchy.
We study two types of phenomena: persuasion and anti-social behavior in simulated scenarios involving a guard and a prisoner agent.
arXiv Detail & Related papers (2024-10-09T17:45:47Z) - Persona Inconstancy in Multi-Agent LLM Collaboration: Conformity, Confabulation, and Impersonation [16.82101507069166]
Multi-agent AI systems can be used for simulating collective decision-making in scientific and practical applications.
We examine AI agent ensembles engaged in cross-national collaboration and debate by analyzing their private responses and chat transcripts.
Our findings suggest that multi-agent discussions can support collective AI decisions that more often reflect diverse perspectives.
arXiv Detail & Related papers (2024-05-06T21:20:35Z) - SocialGFs: Learning Social Gradient Fields for Multi-Agent Reinforcement Learning [58.84311336011451]
We propose a novel gradient-based state representation for multi-agent reinforcement learning.
We employ denoising score matching to learn the social gradient fields (SocialGFs) from offline samples.
In practice, we integrate SocialGFs into the widely used multi-agent reinforcement learning algorithms, e.g., MAPPO.
arXiv Detail & Related papers (2024-05-03T04:12:19Z) - SocialBench: Sociality Evaluation of Role-Playing Conversational Agents [85.6641890712617]
Large language models (LLMs) have advanced the development of various AI conversational agents.
SocialBench is the first benchmark designed to evaluate the sociality of role-playing conversational agents at both individual and group levels.
We find that agents excelling in individual level does not imply their proficiency in group level.
arXiv Detail & Related papers (2024-03-20T15:38:36Z) - Dynamics of Moral Behavior in Heterogeneous Populations of Learning Agents [3.7414804164475983]
We study the learning dynamics of morally heterogeneous populations interacting in a social dilemma setting.
We observe several types of non-trivial interactions between pro-social and anti-social agents.
We find that certain types of moral agents are able to steer selfish agents towards more cooperative behavior.
arXiv Detail & Related papers (2024-03-07T04:12:24Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
We propose a reinforcement learning-based framework for learning latent representations of an agent's policy.
We show that our approach outperforms the alternatives and learns to influence the other agent.
arXiv Detail & Related papers (2020-11-12T19:04:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.