Convolutional Differentiable Logic Gate Networks
- URL: http://arxiv.org/abs/2411.04732v1
- Date: Thu, 07 Nov 2024 14:12:00 GMT
- Title: Convolutional Differentiable Logic Gate Networks
- Authors: Felix Petersen, Hilde Kuehne, Christian Borgelt, Julian Welzel, Stefano Ermon,
- Abstract summary: We propose an approach for learning logic gate networks directly via a differentiable relaxation.
We build on this idea, extending it by deep logic gate tree convolutions and logical OR pooling.
On CIFAR-10, we achieve an accuracy of 86.29% using only 61 million logic gates, which improves over the SOTA while being 29x smaller.
- Score: 68.74313756770123
- License:
- Abstract: With the increasing inference cost of machine learning models, there is a growing interest in models with fast and efficient inference. Recently, an approach for learning logic gate networks directly via a differentiable relaxation was proposed. Logic gate networks are faster than conventional neural network approaches because their inference only requires logic gate operators such as NAND, OR, and XOR, which are the underlying building blocks of current hardware and can be efficiently executed. We build on this idea, extending it by deep logic gate tree convolutions, logical OR pooling, and residual initializations. This allows scaling logic gate networks up by over one order of magnitude and utilizing the paradigm of convolution. On CIFAR-10, we achieve an accuracy of 86.29% using only 61 million logic gates, which improves over the SOTA while being 29x smaller.
Related papers
- Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a complex reasoning schema over KG upon large language models (LLMs)
We augment the arbitrary first-order logical queries via binary tree decomposition to stimulate the reasoning capability of LLMs.
Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - Deep Differentiable Logic Gate Networks [29.75063301688965]
We explore logic gate networks for machine learning tasks by learning combinations of logic gates.
We propose differentiable logic gate networks that combine real-valued logics and a continuously parameterized relaxation of the network.
The resulting discretized logic gate networks achieve fast inference speeds beyond a million images of MNIST per second on a single CPU core.
arXiv Detail & Related papers (2022-10-15T12:50:04Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
We propose learning rules with the recently proposed logical neural networks (LNN)
Compared to others, LNNs offer strong connection to classical Boolean logic.
Our experiments on standard benchmarking tasks confirm that LNN rules are highly interpretable.
arXiv Detail & Related papers (2021-12-06T19:38:30Z) - Reinforcement Learning for Scalable Logic Optimization with Graph Neural
Networks [5.156191363676411]
We propose to combine graph convolutional networks with reinforcement learning and a novel, scalable node embedding method to learn which local transforms should be applied to the logic graph.
We show that this method achieves a similar size reduction as ABC on smaller circuits and outperforms it by 1.5-1.75x on larger random graphs.
arXiv Detail & Related papers (2021-05-04T20:51:54Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
A recent neuro-symbolic framework called the Logical Neural Networks (LNNs) can simultaneously provide key-properties of both neural networks and symbolic logic.
We propose an integrated method that enables model-free reinforcement learning from external knowledge sources.
arXiv Detail & Related papers (2021-03-03T12:34:59Z) - Neural Logic Reasoning [47.622957656745356]
We propose Logic-Integrated Neural Network (LINN) to integrate the power of deep learning and logic reasoning.
LINN learns basic logical operations such as AND, OR, NOT as neural modules, and conducts propositional logical reasoning through the network for inference.
Experiments show that LINN significantly outperforms state-of-the-art recommendation models in Top-K recommendation.
arXiv Detail & Related papers (2020-08-20T14:53:23Z) - Evaluating Logical Generalization in Graph Neural Networks [59.70452462833374]
We study the task of logical generalization using graph neural networks (GNNs)
Our benchmark suite, GraphLog, requires that learning algorithms perform rule induction in different synthetic logics.
We find that the ability for models to generalize and adapt is strongly determined by the diversity of the logical rules they encounter during training.
arXiv Detail & Related papers (2020-03-14T05:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.