論文の概要: Quantum Neural Network Classifier for Cancer Registry System Testing: A Feasibility Study
- arxiv url: http://arxiv.org/abs/2411.04740v1
- Date: Thu, 07 Nov 2024 14:22:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:39.920824
- Title: Quantum Neural Network Classifier for Cancer Registry System Testing: A Feasibility Study
- Title(参考訳): がん登録システム検査のための量子ニューラルネットワーク分類器の可能性
- Authors: Xinyi Wang, Shaukat Ali, Paolo Arcaini, Narasimha Raghavan Veeraragavan, Jan F. Nygård,
- Abstract要約: 本稿では,既存の機械学習モデルではなく,量子機械学習モデルであるEvoMaster内での利用可能性を検討するために,Qlinicalを提案する。
結果は、QlinicalがEvoClassに匹敵するパフォーマンスを達成できることを示している。
- 参考スコア(独自算出の注目度): 36.016813621304316
- License:
- Abstract: The Cancer Registry of Norway (CRN) is a part of the Norwegian Institute of Public Health (NIPH) and is tasked with producing statistics on cancer among the Norwegian population. For this task, CRN develops, tests, and evolves a software system called Cancer Registration Support System (CaReSS). It is a complex socio-technical software system that interacts with many entities (e.g., hospitals, medical laboratories, and other patient registries) to achieve its task. For cost-effective testing of CaReSS, CRN has employed EvoMaster, an AI-based REST API testing tool combined with an integrated classical machine learning model. Within this context, we propose Qlinical to investigate the feasibility of using, inside EvoMaster, a Quantum Neural Network (QNN) classifier, i.e., a quantum machine learning model, instead of the existing classical machine learning model. Results indicate that Qlinical can achieve performance comparable to that of EvoClass. We further explore the effects of various QNN configurations on performance and offer recommendations for optimal QNN settings for future QNN developers.
- Abstract(参考訳): ノルウェーがん登録所(英: Cancer Registry of Norway、略称:CRN)はノルウェー公衆衛生研究所(NIPH)の一部である。
このタスクのために、CRNはCaReSS(Carea Registration Support System)と呼ばれるソフトウェアシステムを開発し、テストし、進化させる。
複雑な社会技術ソフトウェアシステムであり、そのタスクを達成するために多くの実体(病院、医学研究所、その他の患者登録所など)と相互作用する。
CaReSSの費用対効果テストのために、CRNでは、AIベースのREST APIテストツールであるEvoMasterと、古典的な機械学習モデルの統合が採用されている。
本研究では,量子ニューラルネットワーク(QNN)分類器であるEvoMasterの内部で,既存の古典的機械学習モデルの代わりに量子機械学習モデルを使用することの可能性を検討するために,Qlinicalを提案する。
結果は、QlinicalがEvoClassに匹敵するパフォーマンスを達成できることを示している。
さらに、様々なQNN設定がパフォーマンスに与える影響について検討し、将来のQNN開発者に最適なQNN設定を提案する。
関連論文リスト
- Multi-Scale Feature Fusion Quantum Depthwise Convolutional Neural Networks for Text Classification [3.0079490585515343]
量子畳み込みに基づく新しい量子ニューラルネットワーク(QNN)モデルを提案する。
我々は、パラメータの数を著しく減らし、計算複雑性を下げる量子深度畳み込みを開発する。
また,単語レベルの特徴と文レベルの特徴を統合することで,モデル性能を向上させるマルチスケール機能融合機構を導入する。
論文 参考訳(メタデータ) (2024-05-22T10:19:34Z) - Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
量子ニューラルネットワーク(QNN)に焦点をあてた量子機械学習は、いまだに膨大な研究分野である。
適応可能な中間層とノードの観点から,従来のFFNNの汎用性とシームレスに整合するボナフェイドQNNモデルを提案する。
本研究では,診断乳がん(Wisconsin)やクレジットカード不正検出データセットなど,さまざまなベンチマークデータセットを用いて提案モデルを検証した。
論文 参考訳(メタデータ) (2024-02-01T15:13:26Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - Quantum Recurrent Neural Networks for Sequential Learning [11.133759363113867]
近いうちに量子優位性のあるアプリケーションを見つけるために,新しい種類の量子リカレントニューラルネットワーク(QRNN)を提案する。
我々のQRNNは、量子デバイスのコヒーレント時間に関してアルゴリズムの要求を大幅に削減できる、停滞した方法でQRBを積み重ねることによって構築されます。
数値実験により,我々のQRNNは古典的RNNと最先端QNNモデルに対する予測(分類)精度が向上し,逐次学習が可能となった。
論文 参考訳(メタデータ) (2023-02-07T04:04:39Z) - Random Quantum Neural Networks (RQNN) for Noisy Image Recognition [0.9205287316703888]
本稿では,RQNN (Random Quantum Neural Networks) の新たなクラスについて紹介する。
提案するRQNNは、重ね合わせ状態と振幅符号化機能を備えたハイブリッド古典量子アルゴリズムを用いる。
MNIST、FashionMNIST、KMNISTデータセットの実験により、提案されたRQNNモデルは平均分類精度が94.9%であることを示した。
論文 参考訳(メタデータ) (2022-03-03T15:15:29Z) - Fully Spiking Variational Autoencoder [66.58310094608002]
スパイキングニューラルネットワーク(SNN)は、超高速で超低エネルギー消費のニューロモルフィックデバイス上で動作することができる。
本研究では,SNNを用いた可変オートエンコーダ(VAE)を構築し,画像生成を実現する。
論文 参考訳(メタデータ) (2021-09-26T06:10:14Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
特徴抽出のための量子回路エンコーダからなる量子畳み込みニューラルネットワーク(QCNN)を構築した。
入力音声はまず、Mel-spectrogramを抽出するために量子コンピューティングサーバにアップストリームされる。
対応する畳み込み特徴は、ランダムパラメータを持つ量子回路アルゴリズムを用いて符号化される。
符号化された機能は、最終認識のためにローカルRNNモデルにダウンストリームされる。
論文 参考訳(メタデータ) (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。