Navigating Trade-offs: Policy Summarization for Multi-Objective Reinforcement Learning
- URL: http://arxiv.org/abs/2411.04784v1
- Date: Thu, 07 Nov 2024 15:26:38 GMT
- Title: Navigating Trade-offs: Policy Summarization for Multi-Objective Reinforcement Learning
- Authors: Zuzanna Osika, Jazmin Zatarain-Salazar, Frans A. Oliehoek, Pradeep K. Murukannaiah,
- Abstract summary: Multi-objective reinforcement learning (MORL) is used to solve problems involving multiple objectives.
We propose an approach for clustering the solution set generated by MORL.
- Score: 10.848218400641466
- License:
- Abstract: Multi-objective reinforcement learning (MORL) is used to solve problems involving multiple objectives. An MORL agent must make decisions based on the diverse signals provided by distinct reward functions. Training an MORL agent yields a set of solutions (policies), each presenting distinct trade-offs among the objectives (expected returns). MORL enhances explainability by enabling fine-grained comparisons of policies in the solution set based on their trade-offs as opposed to having a single policy. However, the solution set is typically large and multi-dimensional, where each policy (e.g., a neural network) is represented by its objective values. We propose an approach for clustering the solution set generated by MORL. By considering both policy behavior and objective values, our clustering method can reveal the relationship between policy behaviors and regions in the objective space. This approach can enable decision makers (DMs) to identify overarching trends and insights in the solution set rather than examining each policy individually. We tested our method in four multi-objective environments and found it outperformed traditional k-medoids clustering. Additionally, we include a case study that demonstrates its real-world application.
Related papers
- UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Human-in-the-Loop Policy Optimization for Preference-Based
Multi-Objective Reinforcement Learning [13.627087954965695]
We propose a human-in-the-loop policy optimization framework for preference-based MORL.
Our method proactively learns the DM's implicit preference information without requiring any priori knowledge.
We evaluate our approach against three conventional MORL algorithms and four state-of-the-art preference-based MORL algorithms.
arXiv Detail & Related papers (2024-01-04T09:17:53Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Multi-Target Multiplicity: Flexibility and Fairness in Target
Specification under Resource Constraints [76.84999501420938]
We introduce a conceptual and computational framework for assessing how the choice of target affects individuals' outcomes.
We show that the level of multiplicity that stems from target variable choice can be greater than that stemming from nearly-optimal models of a single target.
arXiv Detail & Related papers (2023-06-23T18:57:14Z) - Provable Offline Preference-Based Reinforcement Learning [95.00042541409901]
We investigate the problem of offline Preference-based Reinforcement Learning (PbRL) with human feedback.
We consider the general reward setting where the reward can be defined over the whole trajectory.
We introduce a new single-policy concentrability coefficient, which can be upper bounded by the per-trajectory concentrability.
arXiv Detail & Related papers (2023-05-24T07:11:26Z) - Latent-Conditioned Policy Gradient for Multi-Objective Deep Reinforcement Learning [2.1408617023874443]
We propose a novel multi-objective reinforcement learning (MORL) algorithm that trains a single neural network via policy gradient.
The proposed method works in both continuous and discrete action spaces with no design change of the policy network.
arXiv Detail & Related papers (2023-03-15T20:07:48Z) - Sample-Efficient Multi-Objective Learning via Generalized Policy
Improvement Prioritization [8.836422771217084]
Multi-objective reinforcement learning (MORL) algorithms tackle sequential decision problems where agents may have different preferences.
We introduce a novel algorithm that uses Generalized Policy Improvement (GPI) to define principled, formally-derived prioritization schemes.
We empirically show that our method outperforms state-of-the-art MORL algorithms in challenging multi-objective tasks.
arXiv Detail & Related papers (2023-01-18T20:54:40Z) - gTLO: A Generalized and Non-linear Multi-Objective Deep Reinforcement
Learning Approach [2.0305676256390934]
Generalized Thresholded Lexicographic Ordering (gTLO) is a novel method that aims to combine non-linear MORL with the advantages of generalized MORL.
We present promising results on a standard benchmark for non-linear MORL and a real-world application from the domain of manufacturing process control.
arXiv Detail & Related papers (2022-04-11T10:06:49Z) - Discovering Diverse Solutions in Deep Reinforcement Learning [84.45686627019408]
Reinforcement learning algorithms are typically limited to learning a single solution of a specified task.
We propose an RL method that can learn infinitely many solutions by training a policy conditioned on a continuous or discrete low-dimensional latent variable.
arXiv Detail & Related papers (2021-03-12T04:54:31Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - A Distributional View on Multi-Objective Policy Optimization [24.690800846837273]
We propose an algorithm for multi-objective reinforcement learning that enables setting desired preferences for objectives in a scale-invariant way.
We show that setting different preferences in our framework allows us to trace out the space of nondominated solutions.
arXiv Detail & Related papers (2020-05-15T13:02:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.