Latent-Conditioned Policy Gradient for Multi-Objective Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2303.08909v2
- Date: Sat, 05 Oct 2024 02:18:26 GMT
- Title: Latent-Conditioned Policy Gradient for Multi-Objective Deep Reinforcement Learning
- Authors: Takuya Kanazawa, Chetan Gupta,
- Abstract summary: We propose a novel multi-objective reinforcement learning (MORL) algorithm that trains a single neural network via policy gradient.
The proposed method works in both continuous and discrete action spaces with no design change of the policy network.
- Score: 2.1408617023874443
- License:
- Abstract: Sequential decision making in the real world often requires finding a good balance of conflicting objectives. In general, there exist a plethora of Pareto-optimal policies that embody different patterns of compromises between objectives, and it is technically challenging to obtain them exhaustively using deep neural networks. In this work, we propose a novel multi-objective reinforcement learning (MORL) algorithm that trains a single neural network via policy gradient to approximately obtain the entire Pareto set in a single run of training, without relying on linear scalarization of objectives. The proposed method works in both continuous and discrete action spaces with no design change of the policy network. Numerical experiments in benchmark environments demonstrate the practicality and efficacy of our approach in comparison to standard MORL baselines.
Related papers
- Navigating Trade-offs: Policy Summarization for Multi-Objective Reinforcement Learning [10.848218400641466]
Multi-objective reinforcement learning (MORL) is used to solve problems involving multiple objectives.
We propose an approach for clustering the solution set generated by MORL.
arXiv Detail & Related papers (2024-11-07T15:26:38Z) - Learning Multimodal Behaviors from Scratch with Diffusion Policy Gradient [26.675822002049372]
Deep Diffusion Policy Gradient (DDiffPG) is a novel actor-critic algorithm that learns from scratch multimodal policies.
DDiffPG forms a multimodal training batch and utilizes mode-specific Q-learning to mitigate the inherent greediness of the RL objective.
Our approach further allows the policy to be conditioned on mode-specific embeddings to explicitly control the learned modes.
arXiv Detail & Related papers (2024-06-02T09:32:28Z) - HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [72.25707314772254]
We introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task.
The upper level of this framework is dedicated to learning a task-specific mask that delineates the harmony subspace, while the inner level focuses on updating parameters to enhance the overall performance of the unified policy.
arXiv Detail & Related papers (2024-05-28T11:41:41Z) - Safe and Balanced: A Framework for Constrained Multi-Objective Reinforcement Learning [26.244121960815907]
We propose a primal-based framework that orchestrates policy optimization between multi-objective learning and constraint adherence.
Our method employs a novel natural policy gradient manipulation method to optimize multiple RL objectives.
Empirically, our proposed method also outperforms prior state-of-the-art methods on challenging safe multi-objective reinforcement learning tasks.
arXiv Detail & Related papers (2024-05-26T00:42:10Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - PD-MORL: Preference-Driven Multi-Objective Reinforcement Learning
Algorithm [0.18416014644193063]
We propose a novel MORL algorithm that trains a single universal network to cover the entire preference space scalable to continuous robotic tasks.
PD-MORL achieves up to 25% larger hypervolume for challenging continuous control tasks and uses an order of magnitude fewer trainable parameters compared to prior approaches.
arXiv Detail & Related papers (2022-08-16T19:23:02Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - gTLO: A Generalized and Non-linear Multi-Objective Deep Reinforcement
Learning Approach [2.0305676256390934]
Generalized Thresholded Lexicographic Ordering (gTLO) is a novel method that aims to combine non-linear MORL with the advantages of generalized MORL.
We present promising results on a standard benchmark for non-linear MORL and a real-world application from the domain of manufacturing process control.
arXiv Detail & Related papers (2022-04-11T10:06:49Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - Robust Reinforcement Learning via Adversarial training with Langevin
Dynamics [51.234482917047835]
We introduce a sampling perspective to tackle the challenging task of training robust Reinforcement Learning (RL) agents.
We present a novel, scalable two-player RL algorithm, which is a sampling variant of the two-player policy method.
arXiv Detail & Related papers (2020-02-14T14:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.