論文の概要: Defending Deep Regression Models against Backdoor Attacks
- arxiv url: http://arxiv.org/abs/2411.04811v1
- Date: Thu, 07 Nov 2024 15:49:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:46.816766
- Title: Defending Deep Regression Models against Backdoor Attacks
- Title(参考訳): バックドア攻撃に対する深部回帰モデル
- Authors: Lingyu Du, Yupei Liu, Jinyuan Jia, Guohao Lan,
- Abstract要約: ディープレグレッションモデルは、さまざまな安全クリティカルなアプリケーションで使用されているが、バックドア攻撃に対して脆弱である。
本稿では,画像領域の深部回帰モデルがバックドアされているか否かを識別する最初のディフェンスであるDRMGuardを提案する。
- 参考スコア(独自算出の注目度): 31.588830208249384
- License:
- Abstract: Deep regression models are used in a wide variety of safety-critical applications, but are vulnerable to backdoor attacks. Although many defenses have been proposed for classification models, they are ineffective as they do not consider the uniqueness of regression models. First, the outputs of regression models are continuous values instead of discretized labels. Thus, the potential infected target of a backdoored regression model has infinite possibilities, which makes it impossible to be determined by existing defenses. Second, the backdoor behavior of backdoored deep regression models is triggered by the activation values of all the neurons in the feature space, which makes it difficult to be detected and mitigated using existing defenses. To resolve these problems, we propose DRMGuard, the first defense to identify if a deep regression model in the image domain is backdoored or not. DRMGuard formulates the optimization problem for reverse engineering based on the unique output-space and feature-space characteristics of backdoored deep regression models. We conduct extensive evaluations on two regression tasks and four datasets. The results show that DRMGuard can consistently defend against various backdoor attacks. We also generalize four state-of-the-art defenses designed for classifiers to regression models, and compare DRMGuard with them. The results show that DRMGuard significantly outperforms all those defenses.
- Abstract(参考訳): ディープレグレッションモデルは、さまざまな安全クリティカルなアプリケーションで使用されているが、バックドア攻撃に対して脆弱である。
分類モデルには多くの防衛法が提案されているが、回帰モデルの特異性を考慮していないため効果がない。
まず、回帰モデルの出力は離散ラベルの代わりに連続値である。
このように、バックドア回帰モデルの潜在的な感染ターゲットは無限の可能性を持ち、既存の防御によって決定できない。
第2に、バックドア深部回帰モデルのバックドア挙動は、特徴空間内の全てのニューロンの活性化値によって引き起こされるため、既存の防御によって検出および緩和が困難になる。
これらの問題を解決するために,画像領域の深い回帰モデルがバックドアされているか否かを識別する最初のディフェンスであるDRMGuardを提案する。
DRMGuardは、バックドア深部回帰モデルのユニークな出力空間と特徴空間特性に基づいて、リバースエンジニアリングの最適化問題を定式化している。
2つの回帰タスクと4つのデータセットについて広範な評価を行う。
その結果、DRMGuardはさまざまなバックドア攻撃に対して一貫して防御できることがわかった。
また、分類器を回帰モデルに変換するために設計された4つの最先端ディフェンスを一般化し、DRMGuardと比較する。
その結果、DRMGuardはこれらの防衛を著しく上回る結果となった。
関連論文リスト
- Expose Before You Defend: Unifying and Enhancing Backdoor Defenses via Exposed Models [68.40324627475499]
本稿では,Expose Before You Defendという新しい2段階防衛フレームワークを紹介する。
EBYDは既存のバックドア防御手法を総合防衛システムに統合し、性能を向上する。
2つの視覚データセットと4つの言語データセットにまたがる10のイメージアタックと6つのテキストアタックに関する広範な実験を行います。
論文 参考訳(メタデータ) (2024-10-25T09:36:04Z) - Diff-Cleanse: Identifying and Mitigating Backdoor Attacks in Diffusion Models [3.134071086568745]
拡散モデル(DM)は、今日では最も先進的な生成モデルの一つと見なされている。
近年の研究では、DMはバックドア攻撃に弱いことが示唆されている。
この脆弱性は、モデル所有者に評判を害するなど、重大なリスクをもたらす。
Diff-Cleanseは、DM用に特別に設計された2段階のバックドア防御フレームワークである。
論文 参考訳(メタデータ) (2024-07-31T03:54:41Z) - Towards Unified Robustness Against Both Backdoor and Adversarial Attacks [31.846262387360767]
ディープニューラルネットワーク(DNN)は、バックドアと敵の攻撃の両方に対して脆弱であることが知られている。
本稿では,バックドアと敵の攻撃との間には興味深い関係があることを明らかにする。
バックドアと敵の攻撃を同時に防御する新しいプログレッシブ統一防衛アルゴリズムが提案されている。
論文 参考訳(メタデータ) (2024-05-28T07:50:00Z) - TrojFM: Resource-efficient Backdoor Attacks against Very Large Foundation Models [69.37990698561299]
TrojFMは、非常に大きな基礎モデルに適した、新しいバックドア攻撃である。
提案手法では,モデルパラメータのごく一部のみを微調整することでバックドアを注入する。
広範に使われている大規模GPTモデルに対して,TrojFMが効果的なバックドアアタックを起動できることを実証する。
論文 参考訳(メタデータ) (2024-05-27T03:10:57Z) - Breaking the False Sense of Security in Backdoor Defense through Re-Activation Attack [32.74007523929888]
防衛後のバックドアモデルの特徴を再検討する。
既存の訓練後防衛戦略から派生した防衛モデルには,元のバックドアが現存していることが判明した。
我々は,これらの休眠バックドアを推論中に簡単に再活性化できることを実証的に示す。
論文 参考訳(メタデータ) (2024-05-25T08:57:30Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
データ中毒のバックドア攻撃は、機械学習モデルにとって深刻なセキュリティ上の脅威である。
本稿では,トレーニング中のバックドアディフェンスに着目し,データセットが有害になりうる場合でもクリーンなモデルをトレーニングすることを目的とした。
PDB(Proactive Defensive Backdoor)と呼ばれる新しい防衛手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T07:52:26Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
我々は、信頼性の高い分類のための非定型表現を学ぶために、因果性に着想を得たバックドアディフェンス(CBD)を提案する。
CBDは、良性サンプルの予測において高い精度を維持しながら、バックドアの脅威を減らすのに有効である。
論文 参考訳(メタデータ) (2023-03-13T02:25:59Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Confidence Matters: Inspecting Backdoors in Deep Neural Networks via
Distribution Transfer [27.631616436623588]
本稿では,新しい観測結果を基にしたバックドアディフェンスDTInspectorを提案する。
DTInspectorは、ほとんどの高信頼データの予測を変える可能性のあるパッチを学び、それからバックドアの存在を決定する。
論文 参考訳(メタデータ) (2022-08-13T08:16:28Z) - Backdoor Attacks on Crowd Counting [63.90533357815404]
クラウドカウント(Crowd counting)は、シーンイメージ内の人数を推定する回帰タスクである。
本稿では,深層学習に基づくクラウドカウントモデルのバックドア攻撃に対する脆弱性について検討する。
論文 参考訳(メタデータ) (2022-07-12T16:17:01Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。