DimensionX: Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion
- URL: http://arxiv.org/abs/2411.04928v1
- Date: Thu, 07 Nov 2024 18:07:31 GMT
- Title: DimensionX: Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion
- Authors: Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi Duan, Jun Zhang, Yikai Wang,
- Abstract summary: DimensionX is a framework designed to generate 3D and 4D scenes from just a single image with video diffusion.
Our approach begins with the insight that both the spatial structure of a 3D scene and the temporal evolution of a 4D scene can be effectively represented through sequences of video frames.
- Score: 22.11178016375823
- License:
- Abstract: In this paper, we introduce \textbf{DimensionX}, a framework designed to generate photorealistic 3D and 4D scenes from just a single image with video diffusion. Our approach begins with the insight that both the spatial structure of a 3D scene and the temporal evolution of a 4D scene can be effectively represented through sequences of video frames. While recent video diffusion models have shown remarkable success in producing vivid visuals, they face limitations in directly recovering 3D/4D scenes due to limited spatial and temporal controllability during generation. To overcome this, we propose ST-Director, which decouples spatial and temporal factors in video diffusion by learning dimension-aware LoRAs from dimension-variant data. This controllable video diffusion approach enables precise manipulation of spatial structure and temporal dynamics, allowing us to reconstruct both 3D and 4D representations from sequential frames with the combination of spatial and temporal dimensions. Additionally, to bridge the gap between generated videos and real-world scenes, we introduce a trajectory-aware mechanism for 3D generation and an identity-preserving denoising strategy for 4D generation. Extensive experiments on various real-world and synthetic datasets demonstrate that DimensionX achieves superior results in controllable video generation, as well as in 3D and 4D scene generation, compared with previous methods.
Related papers
- 4D Gaussian Splatting: Modeling Dynamic Scenes with Native 4D Primitives [116.2042238179433]
In this paper, we frame dynamic scenes as unconstrained 4D volume learning problems.
We represent a target dynamic scene using a collection of 4D Gaussian primitives with explicit geometry and appearance features.
This approach can capture relevant information in space and time by fitting the underlying photorealistic-temporal volume.
Notably, our 4DGS model is the first solution that supports real-time rendering of high-resolution, novel views for complex dynamic scenes.
arXiv Detail & Related papers (2024-12-30T05:30:26Z) - Wonderland: Navigating 3D Scenes from a Single Image [43.99037613068823]
We introduce a large-scale reconstruction model that uses latents from a video diffusion model to predict 3D Gaussian Splattings for the scenes.
We train the 3D reconstruction model to operate on the video latent space with a progressive training strategy, enabling the efficient generation of high-quality, wide-scope, and generic 3D scenes.
arXiv Detail & Related papers (2024-12-16T18:58:17Z) - 4-LEGS: 4D Language Embedded Gaussian Splatting [12.699978393733309]
We show how to lift-temporal features to a 4D representation based on 3D Gaussianting.
This enables an interactive interface where the user cantemporally localize events in the video from text prompts.
We demonstrate our system on public 3D video datasets of people and animals performing various actions.
arXiv Detail & Related papers (2024-10-14T17:00:53Z) - LT3SD: Latent Trees for 3D Scene Diffusion [71.91446143124648]
We present LT3SD, a novel latent diffusion model for large-scale 3D scene generation.
We demonstrate the efficacy and benefits of LT3SD for large-scale, high-quality unconditional 3D scene generation.
arXiv Detail & Related papers (2024-09-12T16:55:51Z) - 4Real: Towards Photorealistic 4D Scene Generation via Video Diffusion Models [53.89348957053395]
We introduce a novel pipeline designed for text-to-4D scene generation.
Our method begins by generating a reference video using the video generation model.
We then learn the canonical 3D representation of the video using a freeze-time video.
arXiv Detail & Related papers (2024-06-11T17:19:26Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
We present a novel framework, textbfDiffusion4D, for efficient and scalable 4D content generation.
We develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets.
Our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency.
arXiv Detail & Related papers (2024-05-26T17:47:34Z) - Comp4D: LLM-Guided Compositional 4D Scene Generation [65.5810466788355]
We present Comp4D, a novel framework for Compositional 4D Generation.
Unlike conventional methods that generate a singular 4D representation of the entire scene, Comp4D innovatively constructs each 4D object within the scene separately.
Our method employs a compositional score distillation technique guided by the pre-defined trajectories.
arXiv Detail & Related papers (2024-03-25T17:55:52Z) - 4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency [118.15258850780417]
We present textbf4DGen, a novel framework for grounded 4D content creation.
Our pipeline facilitates controllable 4D generation, enabling users to specify the motion via monocular video or adopt image-to-video generations.
Compared to existing video-to-4D baselines, our approach yields superior results in faithfully reconstructing input signals.
arXiv Detail & Related papers (2023-12-28T18:53:39Z) - Real-time Photorealistic Dynamic Scene Representation and Rendering with
4D Gaussian Splatting [8.078460597825142]
Reconstructing dynamic 3D scenes from 2D images and generating diverse views over time is challenging due to scene complexity and temporal dynamics.
We propose to approximate the underlying-temporal rendering volume of a dynamic scene by optimizing a collection of 4D primitives, with explicit geometry and appearance modeling.
Our model is conceptually simple, consisting of a 4D Gaussian parameterized by anisotropic ellipses that can rotate arbitrarily in space and time, as well as view-dependent and time-evolved appearance represented by the coefficient of 4D spherindrical harmonics.
arXiv Detail & Related papers (2023-10-16T17:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.