LoFi: Neural Local Fields for Scalable Image Reconstruction
- URL: http://arxiv.org/abs/2411.04995v2
- Date: Sat, 21 Dec 2024 12:05:18 GMT
- Title: LoFi: Neural Local Fields for Scalable Image Reconstruction
- Authors: AmirEhsan Khorashadizadeh, Tobías I. Liaudat, Tianlin Liu, Jason D. McEwen, Ivan Dokmanić,
- Abstract summary: We introduce a coordinate-based framework for solving imaging inverse problems, termed LoFi (Local Field)
LoFi processes local information at each coordinate separately by multi-layer perceptrons (MLPs), recovering the object at that specific coordinate.
LoFi achieves excellent generalization to out-of-distribution data with memory usage almost independent of image resolution.
- Score: 11.544632963705858
- License:
- Abstract: Neural fields or implicit neural representations (INRs) have attracted significant attention in computer vision and imaging due to their efficient coordinate-based representation of images and 3D volumes. In this work, we introduce a coordinate-based framework for solving imaging inverse problems, termed LoFi (Local Field). Unlike conventional methods for image reconstruction, LoFi processes local information at each coordinate separately by multi-layer perceptrons (MLPs), recovering the object at that specific coordinate. Similar to INRs, LoFi can recover images at any continuous coordinate, enabling image reconstruction at multiple resolutions. With comparable or better performance than standard deep learning models like convolutional neural networks (CNNs) and vision transformers (ViTs), LoFi achieves excellent generalization to out-of-distribution data with memory usage almost independent of image resolution. Remarkably, training on 1024x1024 images requires less than 200MB of memory -- much below standard CNNs and ViTs. Additionally, LoFi's local design allows it to train on extremely small datasets with 10 samples or fewer, without overfitting and without the need for explicit regularization or early stopping.
Related papers
- GLIMPSE: Generalized Local Imaging with MLPs [10.657105348034753]
Deep learning is the current de facto state of the art in tomographic imaging.
A common approach is to feed the result of a simple inversion to a convolutional neural network (CNN) which computes the reconstruction.
We introduce GLIMPSE, a local processing neural network for computed tomography which reconstructs a pixel value by feeding only the measurements associated with the neighborhood of the pixel.
arXiv Detail & Related papers (2024-01-01T17:15:42Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - FocDepthFormer: Transformer with latent LSTM for Depth Estimation from Focal Stack [11.433602615992516]
We present a novel Transformer-based network, FocDepthFormer, which integrates a Transformer with an LSTM module and a CNN decoder.
By incorporating the LSTM, FocDepthFormer can be pre-trained on large-scale monocular RGB depth estimation datasets.
Our model outperforms state-of-the-art approaches across multiple evaluation metrics.
arXiv Detail & Related papers (2023-10-17T11:53:32Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z) - ACORN: Adaptive Coordinate Networks for Neural Scene Representation [40.04760307540698]
Current neural representations fail to accurately represent images at resolutions greater than a megapixel or 3D scenes with more than a few hundred thousand polygons.
We introduce a new hybrid implicit-explicit network architecture and training strategy that adaptively allocates resources during training and inference.
We demonstrate the first experiments that fit gigapixel images to nearly 40 dB peak signal-to-noise ratio.
arXiv Detail & Related papers (2021-05-06T16:21:38Z) - High Quality Remote Sensing Image Super-Resolution Using Deep Memory
Connected Network [21.977093907114217]
Single image super-resolution is crucial for many applications such as target detection and image classification.
We propose a novel method named deep memory connected network (DMCN) based on a convolutional neural network to reconstruct high-quality super-resolution images.
arXiv Detail & Related papers (2020-10-01T15:06:02Z) - Joint Frequency and Image Space Learning for MRI Reconstruction and
Analysis [7.821429746599738]
We show that neural network layers that explicitly combine frequency and image feature representations can be used as a versatile building block for reconstruction from frequency space data.
The proposed joint learning schemes enable both correction of artifacts native to the frequency space and manipulation of image space representations to reconstruct coherent image structures at every layer of the network.
arXiv Detail & Related papers (2020-07-02T23:54:46Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.