論文の概要: LLM2CLIP: Powerful Language Model Unlocks Richer Visual Representation
- arxiv url: http://arxiv.org/abs/2411.04997v4
- Date: Wed, 07 May 2025 16:51:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 14:59:11.700887
- Title: LLM2CLIP: Powerful Language Model Unlocks Richer Visual Representation
- Title(参考訳): LLM2CLIP: よりリッチなビジュアル表現をアンロックする強力な言語モデル
- Authors: Weiquan Huang, Aoqi Wu, Yifan Yang, Xufang Luo, Yuqing Yang, Liang Hu, Qi Dai, Chunyu Wang, Xiyang Dai, Dongdong Chen, Chong Luo, Lili Qiu,
- Abstract要約: この研究は、大規模言語モデル(LLM)がCLIPの機能をどのように強化するか、特により長く複雑なイメージキャプションを処理するために検討する。
キャプション・トゥ・キャプション・トゥ・キャプション・トゥ・コントラスト・ファインチューニング・フレームワークを導入し,LLM出力の識別品質を大幅に向上させた。
提案手法はLoRA法よりも優れ,より優れた性能で4倍近い高速トレーニングを実現している。
- 参考スコア(独自算出の注目度): 72.02635550088546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: CLIP is a foundational multimodal model that aligns image and text features into a shared representation space via contrastive learning on large-scale image-text pairs. Its effectiveness primarily stems from the use of natural language as rich supervision. Motivated by the remarkable advancements in large language models (LLMs), this work explores how LLMs' superior text understanding and extensive open-world knowledge can enhance CLIP's capability, especially for processing longer and more complex image captions. We propose an efficient post-training strategy that integrates LLMs into pretrained CLIP. To address the challenge posed by the autoregressive nature of LLMs, we introduce a caption-to-caption contrastive fine-tuning framework, significantly enhancing the discriminative quality of LLM outputs. Extensive experiments demonstrate that our approach outperforms LoRA-based methods, achieving nearly fourfold faster training with superior performance. Furthermore, we validate substantial improvements over state-of-the-art models such as CLIP, EVA02, and SigLip2 across various zero-shot multimodal retrieval tasks, cross-lingual retrieval tasks, and multimodal language model pretraining.
- Abstract(参考訳): CLIPは、画像とテキストの特徴を大規模な画像とテキストのペアのコントラスト学習を通じて共有表現空間に整列する基礎的なマルチモーダルモデルである。
その効果は主に、リッチ・インフォメーションとしての自然言語の使用に起因している。
大規模言語モデル(LLMs)の顕著な進歩により、LLMの優れたテキスト理解と広範なオープンワールド知識がCLIPの機能、特により長く複雑な画像キャプションを処理するためにどのようにCLIPの能力を向上するかを探求する。
本稿では,LLMを事前学習したCLIPに組み込む効率的なポストトレーニング戦略を提案する。
LLMの自己回帰性に起因する課題に対処するために,LLM出力の識別品質を著しく向上させる,キャプション・トゥ・キャプション・トゥ・キャプション・コントラスト・ファインタニング・フレームワークを導入する。
大規模な実験により、我々の手法はLoRAベースの手法よりも優れており、より優れた性能でほぼ4倍高速なトレーニングが達成されている。
さらに,CLIP,EVA02,SigLip2といった最先端モデルに対して,さまざまなゼロショットマルチモーダル検索タスク,言語横断検索タスク,マルチモーダル言語モデルの事前学習において,大幅な改善が得られた。
関連論文リスト
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T17:41:28Z) - SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs [40.74693126923826]
MLLM(Multimodal Large Language Models)は近年,知覚能力や推論能力が著しく向上している。
イメージレベルの監督を施したトレーニングアダプタは、しばしば重大なミスアライメントをもたらす。
本稿では,視覚言語による事前学習モデルを活用したトークンレベルのアライメント手法であるSupervised Embedding Alignment (SEA)を紹介する。
論文 参考訳(メタデータ) (2024-08-21T17:58:02Z) - From Image to Video, what do we need in multimodal LLMs? [19.85928004619801]
MLLM(Multimodal Large Language Models)は、マルチモーダル情報を理解する上で重要な機能を示す。
画像LLMからの映像LLMのための資源効率の高い開発パイプラインRED-VILLMを提案する。
我々のアプローチは、よりコスト効率が高くスケーラブルなマルチモーダルモデルの進歩の可能性を強調します。
論文 参考訳(メタデータ) (2024-04-18T02:43:37Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
LLMを事前訓練された視覚モデルに組み込んだマルチモーダル大規模言語モデル(MLLM)は、近年、多様な視覚言語タスクにまたがる印象的なパフォーマンスを実証している。
しかし、複数の画像を含む文脈を理解するには不十分である。
本稿では,2つのフェーズ・パラダイムであるブラウズ・アンド・集中型を提案し,より深いマルチモーダルコンテキスト融合を実現する。
論文 参考訳(メタデータ) (2024-02-19T14:59:07Z) - SignVTCL: Multi-Modal Continuous Sign Language Recognition Enhanced by
Visual-Textual Contrastive Learning [51.800031281177105]
SignVTCLは、視覚・テキストのコントラスト学習によって強化された連続手話認識フレームワークである。
マルチモーダルデータ(ビデオ、キーポイント、光学フロー)を同時に統合し、統一された視覚バックボーンをトレーニングする。
従来の方法と比較して最先端の結果が得られます。
論文 参考訳(メタデータ) (2024-01-22T11:04:55Z) - Boosting Large Language Model for Speech Synthesis: An Empirical Study [86.89548753080432]
大規模言語モデル(LLM)は自然言語処理において大きな進歩を遂げており、言語能力は音声や視覚など他のモダリティにも拡張されている。
我々は,事前学習したLLM LLaMA/OPTと音声合成モデルVALL-Eを組み合わせることで,LLMの強化と音声生成能力の総合的な実証調査を行う。
テキストエンコーダとしてLLMとVALL-Eを組み合わせることで,LLMとVALL-Eの3つの統合手法を比較した。
論文 参考訳(メタデータ) (2023-12-30T14:20:04Z) - Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage
and Sharing in LLMs [72.49064988035126]
マルチモーダル大規模言語モデル(MLLM)の強化を目的としたMKS2という手法を提案する。
具体的には、LLMの内部ブロックに組み込まれたコンポーネントであるModular Visual Memoryを導入し、オープンワールドの視覚情報を効率的に保存するように設計されている。
実験により,MKS2は物理的・常識的な知識を必要とする文脈において,LLMの推論能力を大幅に増強することが示された。
論文 参考訳(メタデータ) (2023-11-27T12:29:20Z) - From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language
Models [36.41816380074965]
大規模言語モデル(MLLM)における視覚エンコーダの有効性について検討する。
以上の結果から,CLIPの浅層構造は,接地や領域理解といったきめ細かいタスクに特に有利であることがわかった。
我々は,CLIPとDINOをMergingと統合したシンプルな機能統合戦略であるCOMMを提案する。
論文 参考訳(メタデータ) (2023-10-13T02:41:55Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
MLLM(Multi-modal large language model)は、大規模言語モデル(LLM)に基づいて訓練される。
マルチモーダルなタスクでは優れているが、MLLMの純粋なNLP能力はしばしば過小評価され、テストされていない。
LLMをMLLMに移行するための一般的な戦略である視覚的インストラクションチューニングは、予期せぬ、興味深いことに、改善された真理性と倫理的整合性の両方を達成するのに役立ちます。
論文 参考訳(メタデータ) (2023-09-13T17:57:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。