論文の概要: Precision or Recall? An Analysis of Image Captions for Training Text-to-Image Generation Model
- arxiv url: http://arxiv.org/abs/2411.05079v1
- Date: Thu, 07 Nov 2024 19:00:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:41.680119
- Title: Precision or Recall? An Analysis of Image Captions for Training Text-to-Image Generation Model
- Title(参考訳): 精度とリコール : テキスト・ツー・イメージ・ジェネレーション・モデルのための画像キャプションの分析
- Authors: Sheng Cheng, Maitreya Patel, Yezhou Yang,
- Abstract要約: テキスト・ツー・イメージ・モデルトレーニングにおけるキャプション精度とリコールの重要な役割について分析する。
我々は、大規模視覚言語モデルを用いて、学習のための合成キャプションを生成する。
- 参考スコア(独自算出の注目度): 32.14771853421448
- License:
- Abstract: Despite advancements in text-to-image models, generating images that precisely align with textual descriptions remains challenging due to misalignment in training data. In this paper, we analyze the critical role of caption precision and recall in text-to-image model training. Our analysis of human-annotated captions shows that both precision and recall are important for text-image alignment, but precision has a more significant impact. Leveraging these insights, we utilize Large Vision Language Models to generate synthetic captions for training. Models trained with these synthetic captions show similar behavior to those trained on human-annotated captions, underscores the potential for synthetic data in text-to-image training.
- Abstract(参考訳): テキスト・ツー・イメージ・モデルの進歩にもかかわらず、トレーニングデータの誤調整のため、テキスト記述と正確に整合した画像を生成することは依然として困難である。
本稿では,テキスト・ツー・イメージ・モデルトレーニングにおけるキャプション精度とリコールの重要性について分析する。
人間の注釈付きキャプションを解析したところ、精度とリコールはテキスト画像のアライメントに重要であるが、精度はより大きな影響を及ぼすことがわかった。
これらの知見を生かして,我々はLarge Vision Language Modelsを用いて,学習のための合成キャプションを生成する。
これらの合成キャプションで訓練されたモデルは、人間の注釈付きキャプションで訓練されたキャプションと同じような振る舞いを示し、テキスト・ツー・イメージ・トレーニングにおける合成データの可能性を強調している。
関連論文リスト
- Information Theoretic Text-to-Image Alignment [49.396917351264655]
本稿では,ステア画像生成のための情報理論アライメント尺度を用いた新しい手法を提案する。
提案手法は最先端の手法よりも優れているが,MIを推定するためには事前学習されたデノナイジングネットワークを必要としない。
論文 参考訳(メタデータ) (2024-05-31T12:20:02Z) - Improving face generation quality and prompt following with synthetic captions [57.47448046728439]
画像から正確な外観記述を生成するために,トレーニング不要のパイプラインを導入する。
次に、これらの合成キャプションを使用して、テキストから画像への拡散モデルを微調整する。
提案手法は,高品質で現実的な人間の顔を生成するモデルの能力を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-05-17T15:50:53Z) - Improving Cross-modal Alignment with Synthetic Pairs for Text-only Image
Captioning [13.357749288588039]
以前の作業では、教師なし設定下でのテキスト情報のみに依存して、画像キャプションのためのCLIPのクロスモーダルアソシエーション機能を活用していた。
本稿では,合成画像とテキストのペアを組み込むことにより,これらの問題に対処する新しい手法を提案する。
テキストデータに対応する画像を得るために、事前訓練されたテキスト・ツー・イメージモデルが配置され、CLIP埋め込み空間の実際の画像に対して、生成された画像の擬似特徴を最適化する。
論文 参考訳(メタデータ) (2023-12-14T12:39:29Z) - A Picture is Worth a Thousand Words: Principled Recaptioning Improves
Image Generation [9.552642210681489]
コーパスを特別な自動キャプションモデルで再現し、再カプセル化データセット上でテキスト・ツー・イメージモデルを訓練することにより、モデルがボード全体に大きなメリットをもたらすことを示す。
我々は、コーパスを緩和する様々な方法を分析し、この手法がRECAPと呼ばれ、どちらも列車の干渉の相違を低減し、例ごとにより多くの情報を提供するという証拠を提供する。
論文 参考訳(メタデータ) (2023-10-25T14:10:08Z) - Dense Text-to-Image Generation with Attention Modulation [49.287458275920514]
既存のテキストと画像の拡散モデルは、高密度キャプションを与えられた現実的なイメージを合成するのに苦労する。
そこで我々はDenseDiffusionを提案する。DenseDiffusionは、訓練済みのテキスト・ツー・イメージ・モデルを用いて、そのような高密度キャプションを扱う訓練自由な方法である。
レイアウト条件に特化して訓練したモデルを用いて、同様の品質の視覚的結果を得る。
論文 参考訳(メタデータ) (2023-08-24T17:59:01Z) - Image Captions are Natural Prompts for Text-to-Image Models [70.30915140413383]
本研究では,合成データの学習効果とプロンプトによる合成データ分布の関係を解析した。
本稿では,テキストから画像への生成モデルにより,より情報的で多様な学習データを合成する簡易かつ効果的な手法を提案する。
本手法は,合成学習データに基づいて訓練したモデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-07-17T14:38:11Z) - COSA: Concatenated Sample Pretrained Vision-Language Foundation Model [78.32081709802873]
ほとんどの視覚言語基盤モデルは、事前トレーニングに画像テキストデータセットを使用している。
我々は,COncatenated SAmple pretrained vision- language foundation modelであるCOSAを提案する。
複数の画像テキストペアを事前学習用入力として逐次結合することで、これを実現する。
この変換により、既存の画像テキストコーパスを擬似長文ビデオパラグラフコーパスに変換する。
論文 参考訳(メタデータ) (2023-06-15T12:29:42Z) - Large-Scale Bidirectional Training for Zero-Shot Image Captioning [44.17587735943739]
本稿では、画像キャプションをゼロショットにするための効率的なトレーニングと推論のフレームワークであるBITTERSについて紹介する。
大規模なトレーニングセットとモデルアーキテクチャを慎重に選択することが,ゼロショット画像キャプションの実現の鍵であることを示す。
論文 参考訳(メタデータ) (2022-11-13T00:09:36Z) - LAFITE: Towards Language-Free Training for Text-to-Image Generation [83.2935513540494]
テキストデータなしでテキストから画像への生成モデルをトレーニングするための最初の作業を提案する。
提案手法は,CLIPモデルのマルチモーダルなセマンティック空間の整合性を活用している。
我々は,標準的なテキスト・画像生成タスクにおいて,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-11-27T01:54:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。