Interpretable Measurement of CNN Deep Feature Density using Copula and the Generalized Characteristic Function
- URL: http://arxiv.org/abs/2411.05183v1
- Date: Thu, 07 Nov 2024 21:04:58 GMT
- Title: Interpretable Measurement of CNN Deep Feature Density using Copula and the Generalized Characteristic Function
- Authors: David Chapman, Parniyan Farvardin,
- Abstract summary: We present a novel empirical approach toward measuring the Probability Density Function (PDF) of the deep features of Convolutional Neural Networks (CNNs)
We find that, surprisingly, the one-dimensional marginals of non-negative deep CNN features after major blocks are not well approximated by a Gaussian distribution.
We observe that deep features become increasingly independent with increasing network depth within their typical ranges.
- Score: 1.9797215742507548
- License:
- Abstract: We present a novel empirical approach toward measuring the Probability Density Function (PDF) of the deep features of Convolutional Neural Networks (CNNs). Measurement of the deep feature PDF is a valuable problem for several reasons. Notably, a. Understanding the deep feature PDF yields new insight into deep representations. b. Feature density methods are important for tasks such as anomaly detection which can improve the robustness of deep learning models in the wild. Interpretable measurement of the deep feature PDF is challenging due to the Curse of Dimensionality (CoD), and the Spatial intuition Limitation. Our novel measurement technique combines copula analysis with the Method of Orthogonal Moments (MOM), in order to directly measure the Generalized Characteristic Function (GCF) of the multivariate deep feature PDF. We find that, surprisingly, the one-dimensional marginals of non-negative deep CNN features after major blocks are not well approximated by a Gaussian distribution, and that these features increasingly approximate an exponential distribution with increasing network depth. Furthermore, we observe that deep features become increasingly independent with increasing network depth within their typical ranges. However, we surprisingly also observe that many deep features exhibit strong dependence (either correlation or anti-correlation) with other extremely strong detections, even if these features are independent within typical ranges. We elaborate on these findings in our discussion, where we propose a new hypothesis that exponentially infrequent large valued features correspond to strong computer vision detections of semantic targets, which would imply that these large-valued features are not outliers but rather an important detection signal.
Related papers
- Asymptotics of Learning with Deep Structured (Random) Features [9.366617422860543]
For a large class of feature maps we provide a tight characterisation of the test error associated with learning the readout layer.
In some cases our results can capture feature maps learned by deep, finite-width neural networks trained under gradient descent.
arXiv Detail & Related papers (2024-02-21T18:35:27Z) - Hessian Eigenvectors and Principal Component Analysis of Neural Network
Weight Matrices [0.0]
This study delves into the intricate dynamics of trained deep neural networks and their relationships with network parameters.
We unveil a correlation between Hessian eigenvectors and network weights.
This relationship, hinging on the magnitude of eigenvalues, allows us to discern parameter directions within the network.
arXiv Detail & Related papers (2023-11-01T11:38:31Z) - A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks [52.09243852066406]
Adversarial Converging Time Score (ACTS) measures the converging time as an adversarial robustness metric.
We validate the effectiveness and generalization of the proposed ACTS metric against different adversarial attacks on the large-scale ImageNet dataset.
arXiv Detail & Related papers (2023-10-10T09:39:38Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Bayesian Interpolation with Deep Linear Networks [92.1721532941863]
Characterizing how neural network depth, width, and dataset size jointly impact model quality is a central problem in deep learning theory.
We show that linear networks make provably optimal predictions at infinite depth.
We also show that with data-agnostic priors, Bayesian model evidence in wide linear networks is maximized at infinite depth.
arXiv Detail & Related papers (2022-12-29T20:57:46Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Deep Networks Provably Classify Data on Curves [12.309532551321334]
We study a model problem that uses a deep fully-connected neural network to classify data drawn from two disjoint smooth curves on the unit sphere.
We prove that when (i) the network depth is large to certain properties that set the difficulty of the problem and (ii) the network width and number of samples is intrinsic in the relative depth, randomly-d gradient descent quickly learns to correctly classify all points on the two curves with high probability.
arXiv Detail & Related papers (2021-07-29T20:40:04Z) - Understanding the Distributions of Aggregation Layers in Deep Neural
Networks [8.784438985280092]
aggregation functions as an important mechanism for consolidating deep features into a more compact representation.
In particular, the proximity of global aggregation layers to the output layers of DNNs mean that aggregated features have a direct influence on the performance of a deep net.
We propose a novel mathematical formulation for analytically modelling the probability distributions of output values of layers involved with deep feature aggregation.
arXiv Detail & Related papers (2021-07-09T14:23:57Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - The Spectrum of Fisher Information of Deep Networks Achieving Dynamical
Isometry [9.289846887298852]
The Fisher information matrix (FIM) is fundamental to understanding the trainability of deep neural nets (DNNs)
We investigate the spectral distribution of the conditional FIM, which is the FIM given a single sample, by focusing on fully-connected networks.
We find that the parameter space's local metric linearly depends on the depth even under the dynamical isometry.
arXiv Detail & Related papers (2020-06-14T06:32:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.