Quantum real-time evolution using tensor renormalization group methods
- URL: http://arxiv.org/abs/2411.05301v1
- Date: Fri, 08 Nov 2024 03:05:26 GMT
- Title: Quantum real-time evolution using tensor renormalization group methods
- Authors: Michael Hite, Yannick Meurice,
- Abstract summary: We introduce an approach for approximate real-time evolution of quantum systems using Renormalization Group (TRG) methods originally developed for imaginary time.
We show that it is effective and efficient in evolving Gaussian wave packets for one and two particles in the disordered phase.
- Score: 0.0
- License:
- Abstract: We introduce an approach for approximate real-time evolution of quantum systems using Tensor Renormalization Group (TRG) methods originally developed for imaginary time. We use Higher- Order TRG (HOTRG) to generate a coarse-grained time evolution operator for a 1+1D Transverse Ising Model with a longitudinal field. We show that it is effective and efficient in evolving Gaussian wave packets for one and two particles in the disordered phase. Near criticality behavior is more challenging in real-time. We compare our algorithm with local simulators for universal quantum computers and discuss possible benchmarking in the near future.
Related papers
- Direct Estimation of the Density of States for Fermionic Systems [0.0]
We develop quantum algorithms to extract thermodynamic properties by estimating the density of states (DOS)
Our approach allows one to estimate the DOS for a specific subspace of the full Hilbert space.
We show that our approach is highly robust to algorithmic errors in the time evolution and to gate noise.
arXiv Detail & Related papers (2024-07-03T18:00:05Z) - Efficient and practical Hamiltonian simulation from time-dependent product formulas [1.2534672170380357]
We propose an approach for implementing time-evolution of a quantum system using product formulas.
Our algorithms generate a decomposition of the evolution operator into a product of simple unitaries that are directly implementable on a quantum computer.
Although the theoretical scaling is suboptimal compared with state-of-the-art algorithms, the performance of the algorithms we propose is highly competitive in practice.
arXiv Detail & Related papers (2024-03-13T17:29:05Z) - Tensor Renormalization Group Methods for Quantum Real-time Evolution [0.0]
We show that tensor renormalization group methods can be applied to calculation of Trotterized evolution operators at real time.
We apply the numerical methods to the 1D Quantum Ising Model with an external transverse field in the ordered phase.
arXiv Detail & Related papers (2023-12-22T16:57:14Z) - Stochastic Approximation of Variational Quantum Imaginary Time Evolution [0.716879432974126]
In quantum computers, the imaginary-time evolution of quantum states is integral to various fields.
Here, we suggest a approach to variational quantum imaginary-time evolution, which allows a significant reduction in runtimes.
We demonstrate the efficiency of our algorithm in simulations and show a hardware experiment performing the imaginary-time evolution of the transverse field Ising model on 27 qubits.
arXiv Detail & Related papers (2023-05-11T18:00:06Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Measurement-Based Time Evolution for Quantum Simulation of Fermionic
Systems [0.0]
We show how measurement-based quantum simulation uses effective time evolution via measurement to allow runtime advantages.
We construct a hybrid algorithm to find energy eigenvalues in fermionic models using only measurements on graph states.
arXiv Detail & Related papers (2021-10-27T18:00:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.