論文の概要: Dynamic Scheduling Strategies for Resource Optimization in Computing Environments
- arxiv url: http://arxiv.org/abs/2412.17301v1
- Date: Mon, 23 Dec 2024 05:43:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:56:50.425951
- Title: Dynamic Scheduling Strategies for Resource Optimization in Computing Environments
- Title(参考訳): 資源最適化のための動的スケジューリング手法
- Authors: Xiaoye Wang,
- Abstract要約: 本稿では,資源利用,負荷分散,タスク完了効率といった重要な性能指標のバランスをとることを目的とした,多目的最適化に基づくコンテナスケジューリング手法を提案する。
実験の結果, 従来の静的ルールアルゴリズムや効率アルゴリズムと比較して, 資源利用, 負荷分散, バーストタスク完了において, 最適化されたスケジューリング方式が有益であることが示唆された。
- 参考スコア(独自算出の注目度): 0.29008108937701327
- License:
- Abstract: The rapid development of cloud-native architecture has promoted the widespread application of container technology, but the optimization problems in container scheduling and resource management still face many challenges. This paper proposes a container scheduling method based on multi-objective optimization, which aims to balance key performance indicators such as resource utilization, load balancing and task completion efficiency. By introducing optimization models and heuristic algorithms, the scheduling strategy is comprehensively improved, and experimental verification is carried out using the real Google Cluster Data dataset. The experimental results show that compared with traditional static rule algorithms and heuristic algorithms, the optimized scheduling scheme shows significant advantages in resource utilization, load balancing and burst task completion efficiency. This shows that the proposed method can effectively improve resource management efficiency and ensure service quality and system stability in complex dynamic cloud environments. At the same time, this paper also explores the future development direction of scheduling algorithms in multi-tenant environments, heterogeneous cloud computing, and cross-edge and cloud collaborative computing scenarios, and proposes research prospects for energy consumption optimization, adaptive scheduling and fairness. The research results not only provide a theoretical basis and practical reference for container scheduling under cloud-native architecture, but also lay a foundation for further realizing intelligent and efficient resource management.
- Abstract(参考訳): クラウドネイティブアーキテクチャの急速な開発により、コンテナテクノロジの広範な適用が促進されたが、コンテナスケジューリングとリソース管理における最適化問題は、依然として多くの課題に直面している。
本稿では,資源利用,負荷分散,タスク完了効率といった重要な性能指標のバランスをとることを目的とした,多目的最適化に基づくコンテナスケジューリング手法を提案する。
最適化モデルとヒューリスティックアルゴリズムを導入することにより、スケジューリング戦略を網羅的に改善し、実際のGoogle Cluster Dataデータセットを用いて実験的な検証を行う。
実験結果から,従来の静的ルールアルゴリズムやヒューリスティックアルゴリズムと比較して,資源利用,負荷分散,バーストタスク完了効率において,最適化されたスケジューリング方式が大きな利点を示すことがわかった。
提案手法は, 複雑な動的クラウド環境において, 資源管理効率を効果的に向上し, サービス品質とシステムの安定性を確保できることを示す。
同時に、マルチテナント環境、異種クラウドコンピューティング、およびクロスエッジおよびクラウド協調コンピューティングシナリオにおけるスケジューリングアルゴリズムの今後の開発方向についても検討し、エネルギー消費の最適化、適応スケジューリング、公正性に関する研究の展望を提案する。
この研究結果は、クラウドネイティブアーキテクチャの下でのコンテナスケジューリングの理論的基礎と実践的参照を提供するだけでなく、インテリジェントで効率的なリソース管理をさらに実現するための基盤も設けている。
関連論文リスト
- Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments [8.315191578007857]
そこで本研究では,Q-ラーニングに基づく新しいコンピュータシステムの性能最適化と適応型ワークロード管理スケジューリングアルゴリズムを提案する。
対照的に、強化学習アルゴリズムであるQラーニングは、システムの状態変化から継続的に学習し、動的スケジューリングとリソース最適化を可能にする。
この研究は、将来の大規模システムにおけるAI駆動適応スケジューリングの統合の基礎を提供し、システムのパフォーマンスを高め、運用コストを削減し、持続可能なエネルギー消費をサポートするスケーラブルでインテリジェントなソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-08T05:58:09Z) - Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes [0.0]
本稿では,動的負荷スケジューリングの課題に対処する強化学習(RL)手法を提案する。
提案手法は実時間負荷スケジューリングのためのロバストでスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-23T09:16:22Z) - Reinforcement Learning-Based Adaptive Load Balancing for Dynamic Cloud Environments [0.0]
これらの課題に対処するために,Reinforcement Learning (RL) を用いた適応型ロードバランシングフレームワークを提案する。
我々のフレームワークは、タスクを動的に再配置し、レイテンシを最小化し、サーバ間のリソース利用のバランスを確保するように設計されています。
実験の結果,提案したRLベースのロードバランサは,応答時間,資源利用量,ワークロードの変化に対する適応性などの観点から,従来のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-09-07T19:40:48Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
本研究では,長期エネルギー制約下でのデータ到着や資源の可利用性に固有のランダム性に対処する動的スケジューリングと資源割当アルゴリズムを開発した。
提案アルゴリズムは, デバイススケジューリング, 計算容量調整, 帯域幅の割り当ておよび各ラウンドの送信電力を適応的に決定する。
本手法の有効性をシミュレーションにより検証し,ベースライン方式と比較して学習性能とエネルギー効率が向上したことを示す。
論文 参考訳(メタデータ) (2024-05-20T14:13:22Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - A general Framework for Utilizing Metaheuristic Optimization for
Sustainable Unrelated Parallel Machine Scheduling: A concise overview [1.9425072949353568]
非関連並列機械スケジューリング問題(UPMSP)へのメタヒューリスティック最適化アルゴリズムの適用について検討する。
本稿では,遺伝的アルゴリズム,粒子群最適化,アリコロニー最適化などのメタヒューリスティックアルゴリズムについて検討する。
これらのアルゴリズムは、資源利用の向上、エネルギー消費の最小化、環境への影響の低減、社会的に責任のある実践を促進する能力に基づいて評価される。
論文 参考訳(メタデータ) (2023-09-14T17:30:26Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
基地局(vBS)を備えたオープンラジオアクセスネットワークシステムは、柔軟性の向上、コスト削減、ベンダーの多様性、相互運用性のメリットを提供する。
本研究では,予期せぬ「混み合う」環境下であっても,効率的なスループットとvBSエネルギー消費のバランスをとるオンライン学習アルゴリズムを提案する。
提案手法は, 課題のある環境においても, 平均最適性ギャップをゼロにすることで, サブ線形後悔を実現する。
論文 参考訳(メタデータ) (2023-09-04T17:30:21Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
我々は,長期的エネルギー制約のある分散エッジデバイスにおいて,トレーニングデータを時間とともにランダムに生成するフェデレーションエッジ学習(FEEL)システムを検討する。
限られた通信リソースとレイテンシ要件のため、各イテレーションでローカルトレーニングプロセスに参加するのはデバイスのサブセットのみである。
論文 参考訳(メタデータ) (2023-05-02T07:41:16Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
生成的人工知能の最近の進歩は、機械学習トレーニングの需要が急増し、エネルギー消費の大幅な増加によるコスト負担と環境問題を引き起こしている。
地理的に分散したクラウドデータセンタ間でのトレーニングジョブのスケジューリングは、安価で低炭素エネルギーのコンピューティング能力の使用を最適化する機会を浮き彫りにする。
本研究では,実生活におけるワークロードパターン,エネルギー価格,炭素強度を組み込んだクラウドシステムと対話することで,マルチエージェント強化学習とアクタクリティカルな手法に基づく最適協調スケジューリング戦略の学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-17T02:12:30Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
再構成可能なインテリジェントサーフェス (STAR-RIS) アシストネットワークを同時に送信および反射するカバレッジとキャパシティ最適化のための新しいモデルを提案する。
損失関数ベースの更新戦略はコアポイントであり、各更新時にmin-normソルバによってカバレッジとキャパシティの両方の損失関数の重みを計算することができる。
解析結果から,提案手法は固定重みに基づくMOアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-04-13T13:52:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。