論文の概要: Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee
- arxiv url: http://arxiv.org/abs/2008.10789v1
- Date: Tue, 25 Aug 2020 02:41:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 04:35:23.262266
- Title: Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee
- Title(参考訳): 機械学習を用いたスマート天気予報:テネシー州を事例として
- Authors: A H M Jakaria, Md Mosharaf Hossain, Mohammad Ashiqur Rahman
- Abstract要約: 本稿では,複数の気象観測所の過去のデータを利用して,シンプルな機械学習モデルを訓練する天気予報手法を提案する。
モデルの精度は、現在の最先端技術と併用するのに十分である。
- 参考スコア(独自算出の注目度): 2.9477900773805032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditionally, weather predictions are performed with the help of large
complex models of physics, which utilize different atmospheric conditions over
a long period of time. These conditions are often unstable because of
perturbations of the weather system, causing the models to provide inaccurate
forecasts. The models are generally run on hundreds of nodes in a large High
Performance Computing (HPC) environment which consumes a large amount of
energy. In this paper, we present a weather prediction technique that utilizes
historical data from multiple weather stations to train simple machine learning
models, which can provide usable forecasts about certain weather conditions for
the near future within a very short period of time. The models can be run on
much less resource intensive environments. The evaluation results show that the
accuracy of the models is good enough to be used alongside the current
state-of-the-art techniques. Furthermore, we show that it is beneficial to
leverage the weather station data from multiple neighboring areas over the data
of only the area for which weather forecasting is being performed.
- Abstract(参考訳): 伝統的に、気象予報は、長期間にわたって異なる大気条件を利用する大規模複雑な物理モデルの助けを借りて行われる。
これらの状態は、気象システムの摂動によって不安定になり、モデルが不正確な予報を提供する。
モデルは通常、大量のエネルギーを消費する大規模なハイパフォーマンスコンピューティング(HPC)環境で数百のノードで実行される。
本稿では,複数の気象観測所の過去のデータを用いて,簡単な機械学習モデルを訓練する気象予報手法を提案する。
モデルは、リソース集約的な環境よりもはるかに少ない環境で実行できる。
評価結果から,現在の最先端技術と併用するには,モデルの精度が十分であることがわかった。
また、気象予報が行われている地域のみのデータより、近隣の複数の地域からの気象観測所データを活用することが有益であることを示す。
関連論文リスト
- WeatherGFM: Learning A Weather Generalist Foundation Model via In-context Learning [69.82211470647349]
第1次一般気象基礎モデル(WeatherGFM)を紹介する。
気象理解タスクの幅広い範囲を統一的な方法で解決する。
我々のモデルは、天気予報、超解像、天気画像翻訳、後処理など、最大10の気象理解タスクを効果的に処理できる。
論文 参考訳(メタデータ) (2024-11-08T09:14:19Z) - Super Resolution On Global Weather Forecasts [0.1747623282473278]
グループは,グローバル気象予測の空間分解能を高めることにより,既存の深層学習に基づく予測手法の改善を目指している。
具体的には、大域的精度を1度から0.5度に高めることにより、グラフCast温度予測における超解像(SR)の実行に関心がある。
論文 参考訳(メタデータ) (2024-09-17T19:07:13Z) - WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models [11.016845506758841]
我々は,地球近傍の地表面観測から得られた気象予報のための新しいベンチマークデータセットであるWeatherRealを紹介する。
本稿では,データセットの基盤となる情報源と処理手法を詳述するとともに,超局地的・極端な気象観測におけるその場観測の利点について述べる。
私たちの研究は、AIベースの天気予報研究を、よりアプリケーション中心で運用対応のアプローチへと進めることを目的としています。
論文 参考訳(メタデータ) (2024-09-14T08:53:46Z) - How far are today's time-series models from real-world weather forecasting applications? [22.68937280154092]
WEATHER-5Kは、現実世界のシナリオをよりよく反映した観測気象データの包括的収集である。
これにより、モデルのより良いトレーニングと、TSFモデルの現実の予測能力のより正確な評価が可能になる。
我々は,学術的TSFモデルと実世界の天気予報アプリケーションとのギャップを,研究者に明確に評価する。
論文 参考訳(メタデータ) (2024-06-20T15:18:52Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Precipitation nowcasting with generative diffusion models [0.0]
降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
論文 参考訳(メタデータ) (2023-08-13T09:51:16Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Efficient spatio-temporal weather forecasting using U-Net [0.0]
天気予報は、人間の日常生活における様々な側面において重要な役割を果たす。
ディープラーニングに基づくモデルは、多くの天気予報関連タスクで広範囲に成功している。
論文 参考訳(メタデータ) (2021-12-13T10:28:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。