論文の概要: An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking
- arxiv url: http://arxiv.org/abs/2411.05508v1
- Date: Fri, 08 Nov 2024 12:08:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:55:10.794774
- Title: An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking
- Title(参考訳): FIRSTの初期再現と高速リストリグレードのためのシングルトークンデコーディングの改善
- Authors: Zijian Chen, Ronak Pradeep, Jimmy Lin,
- Abstract要約: FIRSTは、学習からランクへの目的を統合し、最初の生成されたトークンのみのロジットを活用する新しいアプローチである。
我々は、FIRSTの評価をTRECディープラーニングデータセット(DL19-22)に拡張し、様々な領域でその堅牢性を検証する。
我々の実験は、単一トークンの高速リランクは、ドメイン外リランクの品質を損なうものではないことを確認した。
- 参考スコア(独自算出の注目度): 50.81324768683995
- License:
- Abstract: Recent advances have demonstrated that large language models (LLMs) excel as listwise rerankers, but their high computational demands remain a barrier to widespread adoption. Further, the traditional language modeling (LM) objective is not ideally suited for reranking tasks. FIRST is a novel approach that addresses these challenges by integrating a learning-to-rank objective and leveraging the logits of only the first generated token, thereby significantly reducing inference latency compared to traditional LLM rerankers. In this study, we extend the evaluation of FIRST to the TREC Deep Learning datasets (DL19-22), validating its robustness across diverse domains. We investigate the influence of different first-stage retrievers on FIRST rerankers, observing diminishing returns and patterns consistent with traditional LLM rerankers. Through applying the FIRST objective to a broader range of backbone models, we achieve effectiveness surpassing the original implementation. Our experiments confirm that fast reranking with single-token logits does not compromise out-of-domain reranking quality. To better quantify the computational savings in the original study, we measure and compare latency to find a 21%-42% gain across various models and benchmarks. Moreover, while LM training implicitly improves zero-shot single-token reranking, our experiments also raise questions about whether LM pre-training may hinder subsequent fine-tuning with the FIRST objective. These findings pave the way for more efficient and effective listwise reranking in future applications.
- Abstract(参考訳): 近年の進歩は、大規模言語モデル(LLM)がリストワイド・リランカとして優れていることを示しているが、その高い計算要求は、広く普及するための障壁である。
さらに、従来の言語モデリング(LM)の目的はタスクの再ランク付けには適していない。
FIRSTは、学習からランクまでの目的を統合し、最初のトークンのみのロジットを活用することによって、これらの課題に対処する新しいアプローチである。
本研究では,FIRST の評価を TREC Deep Learning データセット (DL19-22) に拡張し,その堅牢性を検証する。
本研究では,FIRSTリランカーに対する第1ステージレトリバーの影響について検討し,従来のLCMリランカーと整合したリターンとパターンを観察した。
FIRSTの目的を幅広いバックボーンモデルに適用することにより、元の実装を超える効果を達成できる。
我々の実験は、単一トークンの高速リランクは、ドメイン外リランクの品質を損なうものではないことを確認した。
元の研究では,計算コストの定量化のために,様々なモデルやベンチマークにおいて,レイテンシの測定と比較を行い,21%-42%のゲインを求める。
さらに、LMトレーニングはゼロショット単発リランクを暗黙的に改善するが、この実験は、LM事前トレーニングがFIRSTの目的による後続の微調整を妨げているかどうかについても疑問を投げかける。
これらの発見は、将来のアプリケーションにおいて、より効率的で効果的なリストワイズへの道を開いた。
関連論文リスト
- LLMs are Biased Evaluators But Not Biased for Retrieval Augmented Generation [28.61326111959728]
大規模言語モデル(LLM)は評価タスク、特に優先的に評価し、自己生成したコンテンツを好む場合に重大なバイアスを示す。
本研究では,この知識ギャップを,検索強化世代(RAG)フレームワークの2つの重要なフェーズをシミュレートすることによって解決する。
以上の結果とは対照的に,RAGフレームワークに有意な自己選好効果は認められなかった。
論文 参考訳(メタデータ) (2024-10-28T08:32:09Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
大規模言語モデル(LLM)は、最近、強力な汎用ツールとして登場した。
本稿では,従来の行動分布としてLLMを扱い,それらをRLフレームワークに統合することを提案する。
LLMに基づくアクションの事前処理を取り入れることで、探索と複雑性の最適化が大幅に削減されることを示す。
論文 参考訳(メタデータ) (2024-10-10T13:54:11Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Simple and Scalable Strategies to Continually Pre-train Large Language Models [20.643648785602462]
大規模言語モデル(LLM)は、数十億のトークンで定期的に事前訓練されるが、新しいデータが利用可能になると、プロセスを再開する。
学習率のリウォーミング、LR再計算、過去のデータのリプレイをシンプルかつスケーラブルに組み合わせることで、スクラッチから完全に再学習する性能に匹敵することを示す。
論文 参考訳(メタデータ) (2024-03-13T17:58:57Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z) - Mitigating the Learning Bias towards Repetition by Self-Contrastive
Training for Open-Ended Generation [92.42032403795879]
GPT2のような事前訓練された言語モデル(LM)は、繰り返しテキストを生成する傾向にあることを示す。
トークンレベルの反復確率の過大評価は学習バイアスに起因している。
LMは文レベルの繰り返しループの原因となる非繰り返しトークンよりも長い範囲依存を用いて繰り返しトークンを予測する。
論文 参考訳(メタデータ) (2023-07-04T07:53:55Z) - MRHER: Model-based Relay Hindsight Experience Replay for Sequential Object Manipulation Tasks with Sparse Rewards [11.79027801942033]
モデルベース Relay Hindsight Experience Replay (MRHER) と呼ばれる新しいモデルベースRLフレームワークを提案する。
MRHERは、継続的なタスクを複雑さを増してサブタスクに分解し、以前のサブタスクを使用して、その後のタスクの学習をガイドする。
MRHERは、ベンチマークタスクにおいて最先端のサンプル効率を示し、RHERの13.79%、14.29%を上回っている。
論文 参考訳(メタデータ) (2023-06-28T09:51:25Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - An Efficiency Study for SPLADE Models [5.725475501578801]
本稿では,SPLADEモデルの効率向上に焦点をあてる。
本稿では、クエリのL1正規化、ドキュメント/エンコーダの分離、FLOPS正規化ミドルトレーニング、高速なクエリエンコーダの使用など、いくつかの手法を提案する。
論文 参考訳(メタデータ) (2022-07-08T11:42:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。