論文の概要: Solving 7x7 Killall-Go with Seki Database
- arxiv url: http://arxiv.org/abs/2411.05565v1
- Date: Fri, 08 Nov 2024 13:40:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:54:33.822289
- Title: Solving 7x7 Killall-Go with Seki Database
- Title(参考訳): Seki Databaseによる7x7 Killall-Goの解決
- Authors: Yun-Jui Tsai, Ting Han Wei, Chi-Huang Lin, Chung-Chin Shih, Hung Guei, I-Chen Wu, Ti-Rong Wu,
- Abstract要約: 本稿では,7x7 Killall-Goの検索スペースを大幅に削減する手法に焦点を当てた。
囲碁やキラルゴーでは、ライブ・パターンは相手の捕獲から保護される石である。
本稿では,すべての図柄を所定面積まで列挙し,その図柄を石テーブルに格納する。
- 参考スコア(独自算出の注目度): 15.829278142585142
- License:
- Abstract: Game solving is the process of finding the theoretical outcome for a game, assuming that all player choices are optimal. This paper focuses on a technique that can reduce the heuristic search space significantly for 7x7 Killall-Go. In Go and Killall-Go, live patterns are stones that are protected from opponent capture. Mutual life, also referred to as seki, is when both players' stones achieve life by sharing liberties with their opponent. Whichever player attempts to capture the opponent first will leave their own stones vulnerable. Therefore, it is critical to recognize seki patterns to avoid putting oneself in jeopardy. Recognizing seki can reduce the search depth significantly. In this paper, we enumerate all seki patterns up to a predetermined area size, then store these patterns into a seki table. This allows us to recognize seki during search, which significantly improves solving efficiency for the game of Killall-Go. Experiments show that a day-long, unsolvable position can be solved in 482 seconds with the addition of a seki table. For general positions, a 10% to 20% improvement in wall clock time and node count is observed.
- Abstract(参考訳): ゲーム解決は、全てのプレイヤーの選択が最適であると仮定して、ゲームの理論的な結果を見つける過程である。
本稿では,7x7 Killall-Go のヒューリスティック検索空間を大幅に削減する手法に焦点を当てた。
囲碁やキラルゴーでは、ライブ・パターンは相手の捕獲から保護される石である。
石(せき)とは、両選手の石が相手と自由を共有することで人生を成し遂げる際の事である。
どのプレイヤーが最初に相手を捕らえようとも、相手の石は弱くなる。
そのため、危険に晒されるのを避けるため、図柄の認識が重要である。
関の認識により探索深度が大幅に低下する。
本稿では,すべての図柄を所定面積まで列挙し,その図柄を石テーブルに格納する。
これにより,探索中の関の認識が可能となり,Kilall-Goの解法効率が大幅に向上する。
実験の結果,石テーブルの追加により,482秒で1日の長さの解決不可能な位置を解決できることが確認された。
一般的な位置では、壁時計時間とノード数の10%から20%の改善が観察される。
関連論文リスト
- Game Solving with Online Fine-Tuning [17.614045403579244]
本稿では,探索中のオンラインファインチューニングの適用について検討し,ゲーム問題解決のための最適設計計算を学習するための2つの方法を提案する。
実験の結果,オンラインファインチューニングを用いることで,ベースラインに比べて23.54%の時間しか利用できない7x7 Killall-Goの課題が解決できることがわかった。
論文 参考訳(メタデータ) (2023-11-13T09:09:52Z) - The Update-Equivalence Framework for Decision-Time Planning [78.44953498421854]
本稿では,サブゲームの解決ではなく,更新等価性に基づく意思決定時計画のための代替フレームワークを提案する。
ミラー降下に基づく完全協調型ゲームに対する有効音声探索アルゴリズムと、磁気ミラー降下に基づく対戦型ゲームに対する探索アルゴリズムを導出する。
論文 参考訳(メタデータ) (2023-04-25T20:28:55Z) - Learning to Play Stochastic Two-player Perfect-Information Games without
Knowledge [5.071342645033634]
我々はDescentフレームワークを拡張し、完全な情報を持つ2人プレイヤゲームのコンテキストにおける学習と計画を可能にする。
我々は、最先端のアルゴリズムに対してEin wurfelt!で評価する。
最良の結果を得るのはDescentの一般化である。
論文 参考訳(メタデータ) (2023-02-08T20:27:45Z) - Generalised agent for solving higher board states of tic tac toe using
Reinforcement Learning [0.0]
本研究の目的は, 短時間で正確な移動を行うため, 高位板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板
そのアイデアは、よく考えられた学習問題として、ティック・タック・トイ・ゲーム(tic tac toe game)を取り入れることだ。
研究とその成果は有望であり、トレーニングの各エポックに比例して高い勝利を与える。
論文 参考訳(メタデータ) (2022-12-23T10:58:27Z) - Predicting Winning Regions in Parity Games via Graph Neural Networks
(Extended Abstract) [68.8204255655161]
グラフニューラルネットワークを用いてパリティゲームの勝利領域を決定するための不完全時間的アプローチを提案する。
これは、データセットの60%の勝利領域を正しく決定し、残りの領域で小さなエラーしか発生しない。
論文 参考訳(メタデータ) (2022-10-18T15:10:25Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
チームベースのマルチプレイヤーゲームにおいて,協調動作を検出するシステムを提案する。
提案手法は,ゲーム内行動パターンと組み合わせたプレイヤーの社会的関係を解析する。
次に,非教師なし学習手法であるアイソレーションフォレストによる検出を自動化する。
論文 参考訳(メタデータ) (2022-03-10T02:37:39Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - Safe Search for Stackelberg Equilibria in Extensive-Form Games [24.557177222572786]
スタックルバーグ均衡(Stackelberg equilibrium)は、2人プレイヤゲームにおいて、リーダーが従者に対するコミットメント権を持つ解概念である。
一般ゲームにおけるスタックルバーグ平衡の計算に探索を適用するための理論的に健全で実験的に有効な方法を提案する。
論文 参考訳(メタデータ) (2021-02-02T22:01:19Z) - Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies
in Extensive-Form Zero-Sum Games [123.76716667704625]
我々は,不完全情報ゼロサム拡張形式ゲームにおいて,対戦相手と対決する2人の選手のチームにとって最適な戦略を見つけることの課題に焦点をあてる。
この設定では、チームができる最善のことは、ゲーム開始時の関節(つまり相関した)確率分布から潜在的にランダム化された戦略(プレイヤー1人)のプロファイルをサンプリングすることである。
各プロファイルにランダム化されるのはチームメンバーの1人だけであるプロファイルのみを用いることで、そのような最適な分布を計算するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-09-21T17:51:57Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
学習者が最初にプレーするゲームと、選択した行動に反応する相手との連続的なゲームについて考察する。
対戦相手の対戦相手列と対戦する際,学習者に対して新しいアルゴリズムを提案する。
我々の結果には、相手の反応の正則性に依存するアルゴリズムの後悔の保証が含まれている。
論文 参考訳(メタデータ) (2020-07-10T09:33:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。