Expectation vs. Reality: Towards Verification of Psychological Games
- URL: http://arxiv.org/abs/2411.05599v1
- Date: Fri, 08 Nov 2024 14:41:52 GMT
- Title: Expectation vs. Reality: Towards Verification of Psychological Games
- Authors: Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos,
- Abstract summary: Psychological games (PGs) were developed as a way to model and analyse agents with belief-dependent motivations.
This paper proposes methods to solve PGs and implementing them within PRISM-games, a formal verification tool for games.
- Score: 18.30789345402813
- License:
- Abstract: Game theory provides an effective way to model strategic interactions among rational agents. In the context of formal verification, these ideas can be used to produce guarantees on the correctness of multi-agent systems, with a diverse range of applications from computer security to autonomous driving. Psychological games (PGs) were developed as a way to model and analyse agents with belief-dependent motivations, opening up the possibility to model how human emotions can influence behaviour. In PGs, players' utilities depend not only on what actually happens (which strategies players choose to adopt), but also on what the players had expected to happen (their belief as to the strategies that would be played). Despite receiving much attention in fields such as economics and psychology, very little consideration has been given to their applicability to problems in computer science, nor to practical algorithms and tool support. In this paper, we start to bridge that gap, proposing methods to solve PGs and implementing them within PRISM-games, a formal verification tool for stochastic games. We discuss how to model these games, highlight specific challenges for their analysis and illustrate the usefulness of our approach on several case studies, including human behaviour in traffic scenarios.
Related papers
- The Double-Edged Sword of Behavioral Responses in Strategic Classification: Theory and User Studies [7.695481260089599]
We propose a strategic classification model that considers behavioral biases in human responses to algorithms.
We show how misperceptions of a classifier can lead to different types of discrepancies between biased and rational agents' responses.
We show that strategic agents with behavioral biases can benefit or (perhaps, unexpectedly) harm the firm compared to fully rational strategic agents.
arXiv Detail & Related papers (2024-10-23T17:42:54Z) - Play with Emotion: Affect-Driven Reinforcement Learning [3.611888922173257]
This paper introduces a paradigm shift by viewing the task of affect modeling as a reinforcement learning process.
We test our hypotheses in a racing game by training Go-Blend agents to model human demonstrations of arousal and behavior.
arXiv Detail & Related papers (2022-08-26T12:28:24Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
This work proposes a novel reinforcement learning mechanism based on the social impact of rivalry behavior.
Our proposed model aggregates objective and social perception mechanisms to derive a rivalry score that is used to modulate the learning of artificial agents.
arXiv Detail & Related papers (2022-08-22T14:06:06Z) - Modelling Behaviour Change using Cognitive Agent Simulations [0.0]
This paper presents work-in-progress research to apply selected behaviour change theories to simulated agents.
The research is focusing on complex agent architectures required for self-determined goal achievement in adverse circumstances.
arXiv Detail & Related papers (2021-10-16T19:19:08Z) - Policy Fusion for Adaptive and Customizable Reinforcement Learning
Agents [137.86426963572214]
We show how to combine distinct behavioral policies to obtain a meaningful "fusion" policy.
We propose four different policy fusion methods for combining pre-trained policies.
We provide several practical examples and use-cases for how these methods are indeed useful for video game production and designers.
arXiv Detail & Related papers (2021-04-21T16:08:44Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
Intuitive psychology is the ability to reason about hidden mental variables that drive observable actions.
Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning.
We present a benchmark consisting of procedurally generated 3D animations, AGENT, structured around four scenarios.
arXiv Detail & Related papers (2021-02-24T14:58:23Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
We provide a unified framework for learning and intervention in games.
We propose two approaches, respectively based on explicit and implicit differentiation.
The analytical results are validated using several real-world problems.
arXiv Detail & Related papers (2020-10-26T18:39:32Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - Diversity in Action: General-Sum Multi-Agent Continuous Inverse Optimal
Control [12.771478252695399]
We present a game-theoretic method that addresses all of the points above.
Compared to many existing methods used for AVs, our approach does 1) not require perfect communication, and 2) allows for individual rewards per agent.
Our experiments demonstrate that these more realistic assumptions lead to qualitatively and quantitatively different reward inference and prediction of future actions that match better with expected real-world behaviour.
arXiv Detail & Related papers (2020-04-27T09:53:52Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
We present a study on how popular reinforcement learning algorithms can be adapted to learn and to play a real-world implementation of a competitive multiplayer card game.
We propose specific training and validation routines for the learning agents, in order to evaluate how the agents learn to be competitive and explain how they adapt to each others' playing style.
arXiv Detail & Related papers (2020-04-08T14:11:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.