FAIRGAME: a Framework for AI Agents Bias Recognition using Game Theory
- URL: http://arxiv.org/abs/2504.14325v2
- Date: Tue, 22 Apr 2025 11:56:45 GMT
- Title: FAIRGAME: a Framework for AI Agents Bias Recognition using Game Theory
- Authors: Alessio Buscemi, Daniele Proverbio, Alessandro Di Stefano, The Anh Han, German Castignani, Pietro Liò,
- Abstract summary: We present FAIRGAME, a Framework for AI Agents Bias Recognition using Game Theory.<n>We describe its implementation and usage, and we employ it to uncover biased outcomes in popular games among AI agents.<n>Overall, FAIRGAME allows users to reliably and easily simulate their desired games and scenarios.
- Score: 51.96049148869987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Letting AI agents interact in multi-agent applications adds a layer of complexity to the interpretability and prediction of AI outcomes, with profound implications for their trustworthy adoption in research and society. Game theory offers powerful models to capture and interpret strategic interaction among agents, but requires the support of reproducible, standardized and user-friendly IT frameworks to enable comparison and interpretation of results. To this end, we present FAIRGAME, a Framework for AI Agents Bias Recognition using Game Theory. We describe its implementation and usage, and we employ it to uncover biased outcomes in popular games among AI agents, depending on the employed Large Language Model (LLM) and used language, as well as on the personality trait or strategic knowledge of the agents. Overall, FAIRGAME allows users to reliably and easily simulate their desired games and scenarios and compare the results across simulation campaigns and with game-theoretic predictions, enabling the systematic discovery of biases, the anticipation of emerging behavior out of strategic interplays, and empowering further research into strategic decision-making using LLM agents.
Related papers
- Do LLMs trust AI regulation? Emerging behaviour of game-theoretic LLM agents [61.132523071109354]
This paper investigates the interplay between AI developers, regulators and users, modelling their strategic choices under different regulatory scenarios.<n>Our research identifies emerging behaviours of strategic AI agents, which tend to adopt more "pessimistic" stances than pure game-theoretic agents.
arXiv Detail & Related papers (2025-04-11T15:41:21Z) - Expectation vs. Reality: Towards Verification of Psychological Games [18.30789345402813]
Psychological games (PGs) were developed as a way to model and analyse agents with belief-dependent motivations.
This paper proposes methods to solve PGs and implementing them within PRISM-games, a formal verification tool for games.
arXiv Detail & Related papers (2024-11-08T14:41:52Z) - The Double-Edged Sword of Behavioral Responses in Strategic Classification: Theory and User Studies [7.695481260089599]
We propose a strategic classification model that considers behavioral biases in human responses to algorithms.
We show how misperceptions of a classifier can lead to different types of discrepancies between biased and rational agents' responses.
We show that strategic agents with behavioral biases can benefit or (perhaps, unexpectedly) harm the firm compared to fully rational strategic agents.
arXiv Detail & Related papers (2024-10-23T17:42:54Z) - Toward Optimal LLM Alignments Using Two-Player Games [86.39338084862324]
In this paper, we investigate alignment through the lens of two-agent games, involving iterative interactions between an adversarial and a defensive agent.
We theoretically demonstrate that this iterative reinforcement learning optimization converges to a Nash Equilibrium for the game induced by the agents.
Experimental results in safety scenarios demonstrate that learning in such a competitive environment not only fully trains agents but also leads to policies with enhanced generalization capabilities for both adversarial and defensive agents.
arXiv Detail & Related papers (2024-06-16T15:24:50Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
This paper surveys current research to provide an in-depth overview of intelligent agents within single and multi-agent systems.
It covers their definitions, research frameworks, and foundational components such as their composition, cognitive and planning methods, tool utilization, and responses to environmental feedback.
We conclude by envisioning prospects for LLM-based agents, considering the evolving landscape of AI and natural language processing.
arXiv Detail & Related papers (2024-01-07T09:08:24Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - ALYMPICS: LLM Agents Meet Game Theory -- Exploring Strategic
Decision-Making with AI Agents [77.34720446306419]
Alympics is a systematic simulation framework utilizing Large Language Model (LLM) agents for game theory research.
Alympics creates a versatile platform for studying complex game theory problems.
arXiv Detail & Related papers (2023-11-06T16:03:46Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.