Modelling Behaviour Change using Cognitive Agent Simulations
- URL: http://arxiv.org/abs/2110.08645v1
- Date: Sat, 16 Oct 2021 19:19:08 GMT
- Title: Modelling Behaviour Change using Cognitive Agent Simulations
- Authors: Catriona M. Kennedy
- Abstract summary: This paper presents work-in-progress research to apply selected behaviour change theories to simulated agents.
The research is focusing on complex agent architectures required for self-determined goal achievement in adverse circumstances.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In health psychology, Behaviour Change Theories(BCTs) play an important role
in modelling human goal achievement in adverse environments. Some of these
theories use concepts that are also used in computational modelling of
cognition and affect in AI. Examples include dual-process architecture and
models of motivation. It is therefore important to ask whether some BCTs can be
computationally implemented as cognitive agents in a way that builds on
existing AI research in cognitive architecture. This paper presents
work-in-progress research to apply selected behaviour change theories to
simulated agents, so that an agent is acting according to the theory while
attempting to complete a task in a challenging scenario. Two behaviour change
theories are selected as examples (CEOS and PRIME). The research is focusing on
complex agent architectures required for self-determined goal achievement in
adverse circumstances where the action is difficult to maintain (e.g. healthy
eating at office parties). Such simulations are useful because they can provide
new insights into human behaviour change and improve conceptual precision. In
addition, they can act as a rapid-prototyping environment for technology
development. High-level descriptive simulations also provide an opportunity for
transparency and participatory design, which is important for user ownership of
the behaviour change process.
Related papers
- Generative Models as a Complex Systems Science: How can we make sense of
large language model behavior? [75.79305790453654]
Coaxing out desired behavior from pretrained models, while avoiding undesirable ones, has redefined NLP.
We argue for a systematic effort to decompose language model behavior into categories that explain cross-task performance.
arXiv Detail & Related papers (2023-07-31T22:58:41Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - Learning Goal-based Movement via Motivational-based Models in Cognitive
Mobile Robots [58.720142291102135]
Humans have needs motivating their behavior according to intensity and context.
We also create preferences associated with each action's perceived pleasure, which is susceptible to changes over time.
This makes decision-making more complex, requiring learning to balance needs and preferences according to the context.
arXiv Detail & Related papers (2023-02-20T04:52:24Z) - Modelling human logical reasoning process in dynamic environmental
stress with cognitive agents [13.171768256928509]
We propose a cognitive agent integrating drift-diffusion with deep reinforcement learning to simulate granular stress effects on logical reasoning process.
Leveraging a large dataset of 21,157 logical responses, we investigate performance impacts of dynamic stress.
Quantitatively, the framework improves cognition modelling by capturing both subject-specific and stimuli-specific behavioural differences.
Overall, this work demonstrates a powerful, data-driven methodology to simulate and understand the vagaries of human logical reasoning process in dynamic contexts.
arXiv Detail & Related papers (2023-01-15T23:46:37Z) - Learning Theory of Mind via Dynamic Traits Attribution [59.9781556714202]
We propose a new neural ToM architecture that learns to generate a latent trait vector of an actor from the past trajectories.
This trait vector then multiplicatively modulates the prediction mechanism via a fast weights' scheme in the prediction neural network.
We empirically show that the fast weights provide a good inductive bias to model the character traits of agents and hence improves mindreading ability.
arXiv Detail & Related papers (2022-04-17T11:21:18Z) - Learning Complex Spatial Behaviours in ABM: An Experimental
Observational Study [0.0]
This paper explores how Reinforcement Learning can be applied to create emergent agent behaviours.
Running a series of simulations, we demonstrate that agents trained using the novel Proximal Policy optimisation algorithm behave in ways that exhibit properties of real-world intelligent adaptive behaviours.
arXiv Detail & Related papers (2022-01-04T11:56:11Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
We present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning.
A core component of our work is to introduce textitagency, such that it is simple to define and create complex scenarios.
We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment.
arXiv Detail & Related papers (2021-06-25T00:21:41Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
Intuitive psychology is the ability to reason about hidden mental variables that drive observable actions.
Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning.
We present a benchmark consisting of procedurally generated 3D animations, AGENT, structured around four scenarios.
arXiv Detail & Related papers (2021-02-24T14:58:23Z) - Models we Can Trust: Toward a Systematic Discipline of (Agent-Based)
Model Interpretation and Validation [0.0]
We advocate the development of a discipline of interacting with and extracting information from models.
We outline some directions for the development of a such a discipline.
arXiv Detail & Related papers (2021-02-23T10:52:22Z) - Probing Emergent Semantics in Predictive Agents via Question Answering [29.123837711842995]
Recent work has shown how predictive modeling can endow agents with rich knowledge of their surroundings, improving their ability to act in complex environments.
We propose question-answering as a general paradigm to decode and understand the representations that such agents develop the model.
We probe their internal state representations with synthetic (English) questions, without backpropagating gradients from the question-answering decoder into the agent.
arXiv Detail & Related papers (2020-06-01T15:27:36Z) - On the Sensory Commutativity of Action Sequences for Embodied Agents [2.320417845168326]
We study perception for embodied agents under the mathematical formalism of group theory.
We introduce the Sensory Commutativity Probability criterion which measures how much an agent's degree of freedom affects the environment.
We empirically illustrate how SCP and the commutative properties of action sequences can be used to learn about objects in the environment.
arXiv Detail & Related papers (2020-02-13T16:58:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.