論文の概要: YOSO: You-Only-Sample-Once via Compressed Sensing for Graph Neural Network Training
- arxiv url: http://arxiv.org/abs/2411.05693v1
- Date: Fri, 08 Nov 2024 16:47:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:54:02.640450
- Title: YOSO: You-Only-Sample-Once via Compressed Sensing for Graph Neural Network Training
- Title(参考訳): グラフニューラルネットワークトレーニングのための圧縮センシングによるあなた専用サンプルオース
- Authors: Yi Li, Zhichun Guo, Guanpeng Li, Bingzhe Li,
- Abstract要約: YOSO(You-Only-Sample-Once)は、予測精度を維持しながら効率的なトレーニングを実現するアルゴリズムである。
YOSOは、正規直交基底計算のような従来の圧縮センシング(CS)法で高価な計算を避けるだけでなく、高い確率精度の保持も保証している。
- 参考スコア(独自算出の注目度): 9.02251811867533
- License:
- Abstract: Graph neural networks (GNNs) have become essential tools for analyzing non-Euclidean data across various domains. During training stage, sampling plays an important role in reducing latency by limiting the number of nodes processed, particularly in large-scale applications. However, as the demand for better prediction performance grows, existing sampling algorithms become increasingly complex, leading to significant overhead. To mitigate this, we propose YOSO (You-Only-Sample-Once), an algorithm designed to achieve efficient training while preserving prediction accuracy. YOSO introduces a compressed sensing (CS)-based sampling and reconstruction framework, where nodes are sampled once at input layer, followed by a lossless reconstruction at the output layer per epoch. By integrating the reconstruction process with the loss function of specific learning tasks, YOSO not only avoids costly computations in traditional compressed sensing (CS) methods, such as orthonormal basis calculations, but also ensures high-probability accuracy retention which equivalent to full node participation. Experimental results on node classification and link prediction demonstrate the effectiveness and efficiency of YOSO, reducing GNN training by an average of 75\% compared to state-of-the-art methods, while maintaining accuracy on par with top-performing baselines.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、さまざまな領域にわたる非ユークリッドデータの分析に欠かせないツールとなっている。
トレーニング段階では,特に大規模アプリケーションにおいて,処理ノード数を制限することによってレイテンシを低減する上で,サンプリングが重要な役割を果たす。
しかし、より良い予測性能の需要が高まるにつれて、既存のサンプリングアルゴリズムはますます複雑になり、かなりのオーバーヘッドが生じる。
そこで本研究では,予測精度を維持しつつ,効率的なトレーニングを実現するアルゴリズムであるYOSO(You-Only-Sample-Once)を提案する。
YOSOは圧縮センシング(CS)ベースのサンプリングと再構築フレームワークを導入し、ノードは入力層で一度サンプリングされ、その後、エポックあたりの出力層でロスレス再構築が行われる。
再構成プロセスと特定の学習タスクの損失関数を統合することで、YOSOは正規直交基底計算などの従来の圧縮センシング(CS)手法におけるコストのかかる計算を回避できるだけでなく、完全ノード参加と同等の高確率の精度保持を保証できる。
ノード分類とリンク予測の実験結果から, YOSOの有効性と効率を実証し, 最先端のベースラインと同等の精度を維持しつつ, 平均75%のGNNトレーニングを削減した。
関連論文リスト
- Sparse Decomposition of Graph Neural Networks [20.768412002413843]
本稿では,集約中に含まれるノード数を削減する手法を提案する。
線形変換された特徴の重み付け和を用いてノード表現の近似を学習し、スパース分解によりこれを実現できる。
提案手法は推論高速化のために設計された他のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-25T17:52:16Z) - Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
ディープオペレータネットワーク(DeepNet)は、様々な科学的・工学的応用における複雑な力学のリアルタイム予測に成功している。
本稿では,DeepONetのトレーニングを取り入れたランダムサンプリング手法を提案する。
実験の結果,訓練中にトランクネットワーク入力にランダム化を組み込むことで,DeepONetの効率性と堅牢性が向上し,複雑な物理系のモデリングにおけるフレームワークの性能向上に期待できる道筋が得られた。
論文 参考訳(メタデータ) (2024-09-20T07:18:31Z) - SGM-PINN: Sampling Graphical Models for Faster Training of Physics-Informed Neural Networks [4.262342157729123]
SGM-PINNは物理情報ニューラルネットワーク(PINN)のトレーニング効率を向上させるグラフベースの重要度サンプリングフレームワークである
提案手法の利点を実証し,従来の最先端サンプリング手法と比較して3倍の収束性を実現した。
論文 参考訳(メタデータ) (2024-07-10T04:31:50Z) - Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
トレーニングの初期段階において、ニューラルネットワークの無関係な層を特定し、排除できるアルゴリズムを提案する。
本研究では,非線形区間を切断した後にネットワークを流れる情報の流れを,非線形ネットワーク区間の周囲の残差接続を用いた構造を用いる。
論文 参考訳(メタデータ) (2024-06-06T23:19:57Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
本稿では,グラフニューラルネットワーク(GNN)における結合エッジモデルスパース学習の理論的特徴について述べる。
解析学的には、重要なノードをサンプリングし、最小のマグニチュードでプルーニングニューロンをサンプリングすることで、サンプルの複雑さを減らし、テスト精度を損なうことなく収束を改善することができる。
論文 参考訳(メタデータ) (2023-02-06T16:54:20Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
スパイキングニューラルネットワーク(SNN)は、バイナリニューラルダイナミックアクティベーションを通じて処理することで、生物学的脳の効率の一部をキャプチャする。
本稿では, シナプス重みを共有しながら, 独立したスパイキング信号をサンプリングする複数のコンパートメントを活用することを提案する。
鍵となる考え方は、これらの信号を使ってログライクなトレーニング基準のより正確な統計的推定と勾配を求めることである。
論文 参考訳(メタデータ) (2021-02-05T16:39:42Z) - Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive
Meta-Pruning [83.59005356327103]
既存のプルーニング技術に共通する制限は、プルーニングの前に少なくとも1回はネットワークの事前トレーニングが必要であることである。
本稿では,ターゲットデータセットの関数としてプルーニングマスクを生成することにより,大規模な参照データセット上で事前訓練されたネットワークをタスク適応的にプルークするSTAMPを提案する。
ベンチマークデータセット上での最近の先進的なプルーニング手法に対するSTAMPの有効性を検証する。
論文 参考訳(メタデータ) (2020-06-22T10:57:43Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。